In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.
The idea of this study depends on determining the demand of water to products of aslected project, and determining transformation wastes according to constant scientific formula and measuring value (the depended) to reach the water needed and give the amount of waste in water and additional areas that can be agricuitured if the right administration and possibilities of exploiting water well are available
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
Background: Obesity tends to appear in modern societies and constitutes a significant public health problem with an increased risk of cardiovascular diseases.
Objective: This study aims to determine the agreement between actual and perceived body image in the general population.
Methods: A descriptive cross-sectional study design was conducted with a sample size of 300. The data were collected from eight major populated areas of Northern district of Karachi Sindh with a period of six months (10th January 2020 to 21st June 2020). The Figure rating questionnaire scale (FRS) was applied to collect the demographic data and perception about body weight. Body mass index (BMI) used for ass
... Show MoreThe problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show More
Abstract
Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t
... Show MoreIn this paper, nanofluid of TiO2/water of concentrations of 0.002% and 0.004% volume was used. This nanofluid was flowing through heat exchanger of shell and concentric double tubes with counter current flow to the hot oil. The thermal conductivity of nanofluid is enhanced with increasing concentrations of the TiO2, this increment was by 19% and 16.5% for 0.004% and 0.002% volume respectively relative to the base fluid (water). Also the heat transfer coefficient of the nanofluid is increased as Reynold's number and nanofluid concentrations increased too. The heat transfer coefficient is increased by 66% and 49% for 0.004% and 0.002% volume respectively relative to the base fluid. This study showed that the friction
... Show MoreIn the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H
... Show More