The stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery] and also an empirical Bayes estimator Using Gamma Prior, for singly type II censored sample. An empirical study has been used to make a comparison between the three estimators of the reliability for stress – strength Weibull model, by mean squared error MSE criteria, taking different sample sizes (small, moderate and large) for the two random variables in eight experiments of different values of their parameters. It has been found that the weighted loss function was the best for small sample size, and the entropy and Quadratic were the best for moderate and large sample sizes under the two prior distributions and for empirical Bayes estimation.
The study aimed to examine the sensitivity to stress and its relation to positive mood among educational supervisors. The researcher used the descriptive approach as more an appropriate method for the current study. The sample is composed of (200) educational supervisor. To collect study data, two scales have been used: one scale to measure the sensitivity to stress and the other to measure the positive mood. The results indicated that a high level of sensitivity to stress with low level of positive mood among educational supervisors, sensitivity to stress showed significant differences among the sample regarding to major. There is no correlation between sensitivity to stress and positive mood, and finally, there are no significant diffe
... Show MoreOne of the most important problems in the statistical inference is estimating parameters and Reliability parameter and also interval estimation , and testing hypothesis . estimating two parameters of exponential distribution and also reliability parameter in a stress-strength model.
This parameter deals with estimating the scale parameter and the Location parameter µ , of two exponential distribution ,using moments estimator and maximum likelihood estimator , also we estimate the parameter R=pr(x>y), where x,y are two- parameter independent exponential random variables .
Statistical properties of this distribution and its properti
... Show MoreDiscriminant analysis is a technique used to distinguish and classification an individual to a group among a number of groups based on a linear combination of a set of relevant variables know discriminant function. In this research discriminant analysis used to analysis data from repeated measurements design. We will deal with the problem of discrimination and classification in the case of two groups by assuming the Compound Symmetry covariance structure under the assumption of normality for univariate repeated measures data.
... Show More
Abstract: When it comes to applications in welding, cutting, and surface engineering, the utilization of high-power fiber-delivered beams from solid-state lasers offers several benefits. This paper addresses the issue of cleaning the surface of the samples with different spot sizes (50, 100 and 200) (industrial ytterbium fiber laser) to prepared it to be welded. Angular laser cleaning with incident angles (5, 10, 15, 20, 25, 30) ° with different powers (3, 5, 7, 10) W and hatch distance 0.001 was use for implemented.
The main objective of this research is to design and select a composite plate to be used in fabricating wing skins of light unman air vehicle (UAV). The mechanical properties, weight and cost are the basis criteria of this selection. The fiber volume fraction, fillers and type of fiber with three levels for each were considered to optimize the composite plate selection. Finite element method was used to investigate the stress distribution on the wing at cruise flight condition in addition to estimate the maximum stress. An experiments plan has been designed to get the data on the basis of Taguchi technique. The most effective parameters at the process to be find out by employing L9
... Show MoreThe objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.
Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written
... Show MoreAbstract\
In this research, estimated the reliability of water system network in Baghdad was done. to assess its performance during a specific period. a fault tree through static and dynamic gates was belt and these gates represent logical relationships between the main events in the network and analyzed using dynamic Bayesian networks . As it has been applied Dynamic Bayesian networks estimate reliability by translating dynamic fault tree to Dynamic Bayesian networks and reliability of the system appreciated. As was the potential for the expense of each phase of the network for each gate . Because there are two parts to the Dynamic Bayesian networks and two part of gate (AND), which includes the three basic units of the
... Show MoreIn this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application