The stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery] and also an empirical Bayes estimator Using Gamma Prior, for singly type II censored sample. An empirical study has been used to make a comparison between the three estimators of the reliability for stress – strength Weibull model, by mean squared error MSE criteria, taking different sample sizes (small, moderate and large) for the two random variables in eight experiments of different values of their parameters. It has been found that the weighted loss function was the best for small sample size, and the entropy and Quadratic were the best for moderate and large sample sizes under the two prior distributions and for empirical Bayes estimation.
In this work, the Whittaker wave functions were used to study the nuclear density distributions and elastic electron scattering charge form factors for proton-rich nuclei and their corresponding stable nuclei (10,8B, 13,9C, 14,12N and 19,17F). The parameters of Whittaker’s basis were fixed to generate the experimental values of available size radii. The Whittaker basis was connected to harmonic-oscillator basis through boundary condition at match point. The nuclear shell model was opted with pure configuration for all studied nuclei to compute aforementioned studied quantities except 10
Studies from our laboratory have shown that Δ9-Tetrahydrocannabinol (THC), an ingredient found in marijuana plant Cannabis sativa, can attenuate acute lung injury induced by Staphylococcus enterotoxin B (SEB). In the current study, we investigated the role of THC on the metabolism of SEB-activated lymphocytes. To this end, we determined metabolic potential of SEB-activated lymphocytes treated with vehicle or THC by performing the Cell Mito Stress Test. The oxygen consumption rate (OCR) in THC-treated cells was decreased when compared to vehicle-treated group whereas the extracellular acidification rate (ECAR) was similar in both the groups. Specifically, electron transport chain inhi
With the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch
OpenStreetMap (OSM) represents the most common example of online volunteered mapping applications. Most of these platforms are open source spatial data collected by non-experts volunteers using different data collection methods. OSM project aims to provide a free digital map for all the world. The heterogeneity in data collection methods made OSM project databases accuracy is unreliable and must be dealt with caution for any engineering application. This study aims to assess the horizontal positional accuracy of three spatial data sources are OSM road network database, high-resolution Satellite Image (SI), and high-resolution Aerial Photo (AP) of Baghdad city with respect to an analogue formal road network dataset obtain
... Show MoreIn order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show More