Preferred Language
Articles
/
bsj-2993
Acoustic and Thermal Insulation of Nanocomposites for Building Material: Improvement Of Sound And Thermal Insulation Properties Of Nanocomposite
...Show More Authors

This work aims to enhance acoustic and thermal insulation properties for polymeric composite by adding nanoclay and rock wool as reinforcement materials with different rations. A polymer blend of (epoxy+ polyester) as matrix materials was used. The Hand lay-up technique was used to manufacture the castings. Epoxy and polyester were mixed at different weight ratios involving (50:50, 60:40, 70:30, 80:20, and 90:10) wt. % of (epoxy: polyester) wt. % respectively. Impact tests for optimum sample (OMR), caustic and thermal insulation tests were performed. Nano clay (Kaolinite) with ratios ( 5 and 7.5% ) wt.% , also hybrid reinforcement materials involving (Kaolite 5 & 7.5 % wt.% + 10% volume fraction of rockwool ) were added as reinforcement materials to the optimum sample. Results of impact test prove that the optimum sample has (80:20) wt. % of mixing ratio of (epoxy: polyester) wt. % for using as matrix materials. Moreover, the adding of nanoclay (Kaolinite) with ratio (7.5 wt.%) leads to the highest sound insulation. The sound intensity started at (99.8) db at 100 Hz, and reached to (101.3) db at 10000 Hz., which is much lower than the values obtained from the un-reinforced blend, of which the sound intensity started at (107.2) db and reached to (108.7) db., at the same range of frequencies. Thermal conductivity results show that the optimum matrix with (7.5 %) wt. % has the lowest value about (0.443 k.w\m .c).

        The results show that the blend reinforced with nano clay in a weight fraction (7.5)% has the best sound insulation, so that the sound intensity started at (99.8) db at 100 Hz., and reached (101.3) db at 10000 Hz., which is much lower than the values obtained from the unreinforced blend, of which the sound intensity started at (107.2) db and reached (108.7) db., applying the same range of frequencies. The same casting (blend+7.5% nanoclay) showed the lowest value of thermal conductivity (xxxx) W.m°C in comparison with castings that were made of unreinforced blend and those  hybridized with rockwool.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Performance Improvement of Neural Network Based RLS Channel Estimators in MIMO-OFDM Systems
...Show More Authors

The objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 05 2024
Journal Name
East European Journal Of Physics
Synthesis, Characterization and Functionalization of P3HT-CNT Nanocomposite Thin Films with Doped Ag2O
...Show More Authors

This research focuses on the synthesis of carbon nanotube (CNT) and Poly(3-hexylthiophene) (P3HT) (pristine polymer) with Ag doped (CNT/ P3HT@Ag) nanocomposite thin films to be utilised in various practical applications. First, four samples of CNT solution and different ratios of the polymer (P3HT) [0.1, 0.3, 0.5, and 0.7 wt.%] are prepared to form thin layer of P3HT@CNT nanocomposites by dip-coating method of Ag. To investigate the absorption and conductivity properties for use in various practical applications, structure, morphology, optical, and photoluminescence properties of CNT/P3HT @Ag nanocomposite are systematically evaluated in this study. In this regard, the UV/Vis/NIR spectrophotometer in the wavelength range of 350 to 7

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Traitement Du Signal
Optimizing Acoustic Feature Selection for Estimating Speaker Traits: A Novel Threshold-Based Approach
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Energy Reports
Thermal effectiveness of solar collector using Graphene nanostructures suspended in ethylene glycol–water mixtures
...Show More Authors

View Publication
Scopus (20)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Sat Jan 25 2025
Journal Name
Indonesian Journal Of Chemistry
Synthesis of CuO Nanoparticles from Copper(II) Schiff Base Complex: Evaluation via Thermal Decomposition
...Show More Authors

Copper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Jan 25 2025
Journal Name
Indonesian Journal Of Chemistry
Synthesis of CuO Nanoparticles from Copper(II) Schiff Base Complex: Evaluation via Thermal Decomposition
...Show More Authors

Copper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the

... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jul 17 2019
Journal Name
Aip Conference Proceedings
Annealing effect on characterization of nano crystalline SnSe thin films prepared by thermal evaporation
...Show More Authors

Tin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed.

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect of Residence Time Parameters on Thermal Cracking Extract Phase Lubricating Oil
...Show More Authors

This work studies with produce of light fuel fractions of gasoline, kerosene and gas oil from treatment of residual matter that will be obtained from the solvent extraction process as by product from refined lubricate to improve oil viscosity index in any petroleum refinery. The percentage of this byproduct is approximately 10% according to all feed (crude oil) in the petroleum refinery process. The objective of this research is to study the effect of the residence time parameter on the thermal cracking process of the byproduct feed at a constant temperature, (400 °C). The first step of this treatment is the thermal cracking of this byproduct material by a constructed batch reactor occupied with control device at a selective range of re

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 05 2021
Journal Name
Materials
Optimum Placement of Heating Tubes in a Multi-Tube Latent Heat Thermal Energy Storage
...Show More Authors

Utilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re

... Show More
View Publication Preview PDF
Scopus (17)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Fme Transactions
Thermal-hydraulic hot-spot analysis of IRT-5000 nuclear research reactor: Comparative safety evaluation
...Show More Authors

A detailed methodology is presented in this paper for the calculation of nucleate boiling safety margin (NBSM) in nuclear research reactors using a temperature function with three different thermal-hydraulic hot-spot analyses: nominal, cumulative and statistical for normal operating condition and coolant flow variation. A computer simulation program is developed for applying the methodology to the IRT-5000 reactor based on experimental core data. According to cumulative analysis as the overconservative approach, the NBSM at normal operating condition of thermal power 5 MW and coolant velocity 1.672 m/s was 2.3% with reactor power limit 5.13 MW. However, during power or coolant flow trip condition, transient nucleate boiling would occur for

... Show More
View Publication
Scopus Crossref