Software Defined Network (SDN) is a new technology that separate the control plane from the data plane. SDN provides a choice in automation and programmability faster than traditional network. It supports the Quality of Service (QoS) for video surveillance application. One of most significant issues in video surveillance is how to find the best path for routing the packets between the source (IP cameras) and destination (monitoring center). The video surveillance system requires fast transmission and reliable delivery and high QoS. To improve the QoS and to achieve the optimal path, the SDN architecture is used in this paper. In addition, different routing algorithms are used with different steps. First, we evaluate the video transmission over the SDN with Bellman Ford algorithm. Then, because the limitation of Bellman ford algorithm, the Dijkstra algorithm is used to change the path when a congestion occurs. Furthermore, the Dijkstra algorithm is used with two controllers to reduce the time consumed by the SDN controller. POX and Pyretic SDN controllers are used such that POX controller is responsible for the network monitoring, while Pyretic controller is responsible for the routing algorithm and path selection. Finally, a modified Dijkstra algorithm is further proposed and evaluated with two controllers to enhance the performance. The results show that the modified Dijkstra algorithm outperformed the other approaches in the aspect of QoS parameters.
Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect
... Show MoreA Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreLead-acid batteries have been used increasingly in recent years in solar power systems, especially in homes and small businesses, due to their cheapness and advanced development in manufacturing them. However, these batteries have low voltages and low capacities, to increase voltage and capacities, they need to be connected in series and parallel. Whether they are connected in series or parallel, their voltages and capacities must be equal otherwise the quality of service will be degraded. The fact that these different voltages are inherent in their manufacturing, but these unbalanced voltages can be controlled. Using a switched capacitor is a method that was used in many methods for balancing voltages, but their respons
... Show MoreThe research aims to shed light on banking liberalization and explain its impact on attracting customers, especially since Iraq adopted this policy after (2003) due to the changes that occurred, as the Central Bank of Iraq granted flexibility to banks in setting the interest rate on deposits and loans as well as allowing the entry of foreign banks in the local environment. The research relied on the analytical method for the dimensions of banking liberalization represented by (liberating interest rates, liberating credit, legal reserve requirements, entering foreign banks, privatization) as well as the factors affecting the attraction of customers, and a number of Iraqi banks listed in the Iraqi Stock Exchange were selected as a
... Show MoreRealizing robust interconnectivity in a rapidly changing network topology is a challenging issue. This problem is escalating with the existence of constrained devices in a vehicular environment. Several standards have been developed to support reliable communication between vehicular nodes as the IEEE 1609 WAVE stack. Mitigating the impact of security/mobility protocols on limited capability nodes is a crucial aspect. This paper examines the burden of maintaining authenticity service that associated with each handover process in a vehicular network. Accordingly, a network virtualization-based infrastructure is proposed which tackles the overhead of IEEE 1906 WAVE standard on constrained devices existed in vehicular network. The virtualized
... Show More