Sentiment analysis refers to the task of identifying polarity of positive and negative for particular text that yield an opinion. Arabic language has been expanded dramatically in the last decade especially with the emergence of social websites (e.g. Twitter, Facebook, etc.). Several studies addressed sentiment analysis for Arabic language using various techniques. The most efficient techniques according to the literature were the machine learning due to their capabilities to build a training model. Yet, there is still issues facing the Arabic sentiment analysis using machine learning techniques. Such issues are related to employing robust features that have the ability to discriminate the polarity of sentiments. This paper proposes a hybrid method of linguistic and statistical features along with classification methods for Arabic sentiment analysis. Linguistic features contains stemming and POS tagging, while statistical contains the TF-IDF. A benchmark dataset of Arabic tweets have been used in the experiments. In addition, three classifiers have been utilized including SVM, KNN and ME. Results showed that SVM has outperformed the other classifiers by obtaining an f-score of 72.15%. This indicates the usefulness of using SVM with the proposed hybrid features.
In this paper we study the selection of cognitive elements and criteria of the inflectional structure of the Russian and Arabic languages in the process of speech communication. Phonetic-physiological principle is the main parameter by which the elements and criteria of cognitive activity in the presented study are distinguished. On the basis of the above mentioned parameter, we select the investigated criteria and elements. The first criterion is semantic, reflects the accordance of the elements of thinking to sound combinations in the studied languages, and allows us to distinguish the second criterion – morphonological. The second criterion depends on the phonetic changes of these combinations occurring in the process of speech activit
... Show MoreAbstract. In this scientific work, we investigate the problem of the practical necessity of achieving the adequacy of translation activities with active translation from Russian into Arabic in various fields of translation. Based on the material of the latest suffix vocabulary, a serious attempt is made to clarify and specify the rules for the development of translator's intuition when translating from Russian into Arabic and vice versa. Based on the material collected by the latest suffix vocabulary, we try to make an attempt to reveal the role of suffix word creation in highlighting the general rules for achieving translation equivalence. The paper examines the process of creating words in multi-family languages, the difference between th
... Show MoreA novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio
... Show MoreThis study aims at discussing how gender differences might affect communication among people. For this purpose, several TV interviews are selected and examined on the discourse level. Developing a model of analysis ,is found that certain linguistics have been used by male speakers ,whereas different aspects have been utilized my female speakers like deictic expressions and lexical items of emotion and delicacy .
Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreAbstract
For sparse system identification,recent suggested algorithms are
-norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
ABSTRACT:
Microencapsulation is used to modify and retard drug release as well as to overcome the unpleasant effect
(gastrointestinal disturbances) which are associated with repeated and overdose of ibuprofen per day.
So that, a newly developed method of microencapsulation was utilized (a modified organic method) through a
modification of aqueous colloidal polymer dispersion method using ethylcellulose and sodium alginate coating materials to
prepare a sustained release ibuprofen microcapsules.
The effect of core : wall ratio on the percent yield and encapsulation efficiency of prepared microcapsules was low, whereas
, the release of drug from prepared microcapsules was affected by core: wall ratio ,proportion of coa
This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ
... Show MoreAmidst the changes resulting from the subject matter of expression in art. The necessity of searching for the expressive features of thought that leaves different imprints with aesthetic features and values which called for re-modifying the expressive vision of contemporary drawings. Therefore, this research has been concerned with the study of (abstract expressive features in the drawings of (Serwan Baran) and (Eric Barto) - a comparative study), and the research includes four chapters. The first chapter is devoted to explaining the research problem, its importance, need, purpose, and limits, then determining the most important terms mentioned in it. Where the research problem dealt with the subject of abstract expressive feature
... Show More