In this paper, we consider inequalities in which the function is an element of n-th partially order space. Local and Global uniqueness theorem of solutions of the n-the order Partial differential equation Obtained which are applications of Gronwall's inequalities.
In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
At the last years, the interesting of measurement spicilists was increased to study differential item functioning (DIF) wich is reflect the difference of propability true response for test item from subgroups which have equal level of ability . The aims of this research are, inform the DIFat Namers’scale(2009) for mental health to prepare students and detect items that have DIF. Sample research contants (540) students, we use Mantel- Haenzel chi-square to detect DIF. The results are point to there are (26) items have DIF according to gender which are delated form the scale after that.
Precision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie
... Show MoreThe long-term monitoring of land movements represents the most successful application of the Global Navigation Satellite System (GNSS), particularly the Global Positioning System. However, the application of long term monitoring of land movements depends on the availability of homogenous and consistent daily position time series of stations over a period of time. Such time series can be produced very efficiently by using Precise Point Positioning and Double Difference techniques based on particular sophisticated GNSS processing softwares. Nonetheless, these rely on the availability of GNSS products which are precise satellite orbit and clock, and Earth orientation parameters. Unfortunately, several changes and modifications have been mad
... Show MoreThis paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed f
... Show MoreIn this paper, the delay integral equations in population growth will be described,discussed , studied and transfered this model to integro-differential equation. At last,we will solve this problem by using variational approach.
The concept of the order sum graph associated with a finite group based on the order of the group and order of group elements is introduced. Some of the properties and characteristics such as size, chromatic number, domination number, diameter, circumference, independence number, clique number, vertex connectivity, spectra, and Laplacian spectra of the order sum graph are determined. Characterizations of the order sum graph to be complete, perfect, etc. are also obtained.
in this paper the second order neutral differential equations are incestigated are were we give some new suffucient conditions for all nonoscillatory
In the present work, we use the Adomian Decomposition method to find the approximate solution for some cases of the Newell whitehead segel nonlinear differential equation which was solved previously with exact solution by the Homotopy perturbation and the Iteration methods, then we compared the results.