The induced photodegradation of methyl cellulose (MC) films in air was investigated in the absence and presence of aromatic carbonyl compounds(photosenssitizers): 1,4-naphthaquinone (NQ) and benzophenone (BPH) by accelerated weathering tester. The addition of (0.01 wt %) of low molecular weight aromatic carbonyl compounds to cellulose derivatives films(25µm in thickness) enhanced the photodegradation of the polymer films.The photodegradation rate was measured by the increase in carbonyl absorbance. Decreases in solution viscosity and reduction of molecular weight were also observed in the irradiated samples. Changes in the number-average chain scission, the degree of deterioration and in the quantum yield of chain scission values are also observed, and it was concluded that branching or cross-linking has occurred for cellulose derivative with NQ and BPH. Findings from all analytical techniques indicated that the 1,4-naphthaquinone (NQ) photosensitizer enhance the photodegradation of methyl cellulose more than benzophenone (BPH). The effect of the photosensitizer concentration, (ranging from 0.01 to 0.1 %), on the rate of photodegradation was also monitored for MC films. The rates are increased with increasing the photosensitizer concentration. The effect of film thickness is also studied at fixed sensitizer concentration (0.05%), and results show that the rate of cellulose derivative photodegradation decreases with increasing film thickness. The rate constants of the photodegradation of the photosensitizers deduced in cellulose derivatives films, [at concentration of (0.1%)by weight and thickness (25µm)]. Biodegradation of irradiated cellulose derivatives films was conclusively established with bacteria type Pseudomonas aeuroginosa Rb-19 isolated from crude oil. The amount of bacteria growth on MC after 30 days was lower, while there was no growth observed in MC with BPH
This study was design to investigate the dimensional stability of heat-activated acrylic resin with different methods of flask cooling (15 minutes rapid cooling, one hour bench cooling, four hours delayed deflasking, and 24 hours delayed deflasking) at different time intervals (immediately, two days, seven days, 30 days) after deflasking. Heat-activated acrylic resin was used to prepare acrylic samples. Then, measurement of the distances where achieved between the centers of selected marks in the acrylic samples. They were measured at different time intervals for different methods of flask cooling. The results showed that the group samples of the four hours and 24 hours of delayed deflasking was insignificantly different from the control an
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these
... Show MoreThe use of Near-Surface Mounted (NSM) Carbon-Fiber-Reinforced Polymer (CFRP) strips is an efficient technology for increasing flexural and shear strength or for repairing damaged Reinforced Concrete (RC) members. This strengthening method is a promising technology. However, the thin layer of concrete covering the NSM-CFRP strips is not adequate to resist heat effect when directly exposed to a fire or at a high temperature. There is clear evidence that the strength and stiffness of CFRPs severely deteriorate at high temperatures. Therefore, in terms of fire resistance, the NSM technique has a significant defect. Thus, it is very important to develop a set of efficient fire protection systems to overcome these disadvantages. This pape
... Show MoreThe dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreBackground:Nocturnal Enuresis is a common problem affecting 20% of five years old children and up to 2% of adolescent and young adult. Although it is a self limiting benign condition, it has social and psychological impact on the child and his family. Many pathophysiological theories had been suggested, but none is confirmed. Hypercalciuria has been suggested to be associated with higher incidence of nocturnal enuresis. Objectives:The aim of our study to test the value of Ca/Cr ratio, on random urine sample, in diagnosing hypercalciuria in enuretic children. Type of study: Cross sectional study.Methods:Forty four enuretic children were enrolled in this study and forty five children without nocturnal enuresis were taken as control group.
... Show MoreS Khalifa E, N Adil A, AS Mazin M…, 2008
The impacts of numerous important factors on the Energy Absorption (EA) of torsional Reinforced Concrete (RC) beams strengthened with external FRP is the main purpose and innovation of the current research. A total of 81 datasets were collected from previous studies, focused on the investigation of EA behaviour. The impact of nine different parameters on the Torsional EA of RC-beams was examined and evaluated, namely the concrete compressive strength (f’c), steel yield strength (fy), FRP thickness (tFRP), width-to-depth of the beam section (b/h), horizontal (ρh) and vertical (ρv) steel ratio, angle of twist (θu), ultimate torque (Tu), and FRP ultimate strength (fy-FRP). For the evaluation of the energy absorption capacity at di
... Show More