The present work involved four steps: First step include reaction of acrylamide ,N-?-Methylen-bis(acryl amide) and N-tert Butyl acryl amide with poly acryloyl chloride in the presence of triethyl amine (Et3N) as catalyst, the second step include homopolymerization of all products of the first step by using benzoyl peroxide(BPO) as initiator in (80-90)Co in the presence of Nitrogen gas(N2). In the third step the poly acrylimide which prepare in second step was convert into potassium salt by using alcoholic potassium hydroxide solution. Fourth step include Alkylation of the prepared polymeric salts in third step by react it with different alkyl halides(benzyl chloride, allylbromide , methyl iodide) by using DMF as solvent for(10-12) hours. Structure Confirmation of all prepared polymers were proved using FT-IR, 1H-NMR and C13-NMR spectroscopy for some polymers. Other physical properties including softening and melting points of the polymers were also measured.
Experimental investigation for small horizontal portable wind turbine (SHPWT) of NACA-44, BP-44, and NACA-63, BP-63 profiles under laboratory conditions at different wind velocity range of (3.7-5.8 m/s) achieved in present work. Experimental data tabulated for 2, 3, 4, and 6- bladed rotor of both profiles within range of blade pitch angles . A mathematical model formulated and computer Code for MATLAB software developed. The least-squares regression is used to fit experimental data. As the majority of previous works have been presented for large scale wind turbines, the aims were to present the performance of (SHPWT) and also to make a comparisons between both profiles to conclude which is the best performance. The overall efficiency and el
... Show MoreMethylotrophs bacteria are ubiquitous, and they have the ability to consume single carbon (C1) which makes them biological conversion machines. It is the first study to find facultative methylotrophic bacteria in contaminated soils in Iraq. Conventional PCR was employed to amplify MxaF that encodes methanol dehydrogenase enzyme. DNA templates were extracted from bacteria isolated from five contaminated sites in Basra. The gene specific PCR detected Methylorubrum extorquens as the most dominant species in these environments. The ability of M. extorquens to degrade aliphatic hydrocarbons compound was tested at the laboratory. Within 7 days, gas chromatographic (GC) studies of remaining utilize
... Show MoreABSTRACT Two females of the red-back spider, Latrodectus scelio Thorell, 1870 were first recorded in Iraq, short description with figure was provided
This study was carried out to evaluate the hepato-protective property of (Arachis hypogea L.) peanut skin extracts in CCl4 induced hepatotoxicity in mice. The antioxidant activity was measured utilizing 2, 2-diphenyl-1-1 picrylhydrazyl (DPPH) radical scavenging capacity. The results showed that the methanolic extract was the highest free radical scavenging activity than the aqueous extract with values (92.34 ± 0.45 and 87.62 ± 0.44) respectively in 12 mg/mL compared to 89.61 ± 0.34 for Butylated hydroxytoluene (BHT) and 93.25 ± 0.06 for vitamin C, which means that the methanolic extract of peanut skin is superior to BHT. Furthermore, the total phenolic content was analyzed by using Folin-Ciocalteu method, the amount of total phenol in a
... Show MoreAdsorption of lead ions from wastewater by native agricultural waste, precisely tea waste. After the activation and carbonization of tea waste, there was a substantial improvement in surface area and other physical characteristics which include density, bulk density, and porosity. FTIR analysis indicates that the functional groups in tea waste adsorbent are aromatic and carboxylic. It can be concluded that the tea waste could be a good sorbent for the removal of Lead ions from wastewater. Different dosages of the adsorbents were used in the batch studies. A random series of experiments indicated a removal degree efficiency of lead reaching (95 %) at 5 ppm optimum concentration, with adsorbents R2 =97.75% for tea. Three mo
... Show More