The proton-neutron interacting boson model (IBM-2) has been used to make a schematic study of the Ruthenium ( ) isotopes of mass region around with and . For each isotope of the values of the IBM-2 Hamiltonian parameters, which yield an acceptable results for excitation energies in comparison with those of experimental data, have been determined. Fixed values of the effective charges ( ) and of the proton and neutron g factors ( and ) have been chosen for all isotopes under study. The calculated electric quadrupole moments of state, transitions, the magnetic dipole moments transitions and mixing ratios are in reasonable agreement with the experimental data.
Semi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavel
... Show MoreElectric Quadrupole transitions are calculated for beryllium isotopes (9, 10, 12 and 14). Calculations with configuration mixing shell model usually under estimate the measured E2 transition strength. Although the consideration of a large basis no core shell model with 2ℏtruncations for 9,10,12 and14 where all major shells s, p, sd are used, fail to describe the measured reduced transition strength without normalizing the matrix elements with effective charges to compensate for the discarded space. Instead of using constant effective charges, excitations out of major shell space are taken into account through a microscopic theory which allows particle–hole excitations from the core and model space orbits to all higher orbits
... Show MoreA developed model has been put for the hypothesis of capturing moons in explaining the origin of Jupiter moons, and study the change of the orbital properties of these satellites as well as the distance from the planet. Jupiter moons were divided into two types according to their physical and orbital properties, they are the moons , which are formed from the same material as the planet, so it was named the original moons ,while the moons that have been captured from the surrounding space was renamed exotic moons . And the moons of exotic origin asteroid belt and the Kuiper belt in the region which is behind Neptune, the origin of each clique of moons is an asteroid fragmented after colliding previously with another body and
... Show MoreUnconfined compressive strength (UCS) of rock is the most critical geomechanical property widely used as input parameters for designing fractures, analyzing wellbore stability, drilling programming and carrying out various petroleum engineering projects. The USC regulates rock deformation by measuring its strength and load-bearing capacity. The determination of UCS in the laboratory is a time-consuming and costly process. The current study aims to develop empirical equations to predict UCS using regression analysis by JMP software for the Khasib Formation in the Buzurgan oil fields, in southeastern Iraq using well-log data. The proposed equation accuracy was tested using the coefficient of determination (R²), the average absolute
... Show MoreThe synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.
Several schottky diodes were fabricated from polyaniline/ Carbon nanotube (single and multiwalled) composites. These composites were synthesized with different concentration and two carbon nanotubes types, Single and Multi-Walled Carbon Nanotubes (SWCNT & MWCNT). Aluminum and silver paste were chosen as schottky and ohmic contact respectively. physical and electrical were used to studied these composite by using Atomic Force Microscopy (AFM) and electrical measurements. The Root Mean Square RMS surface roughness of the composite samples was found to be around 4nm. The currentvoltage characteristic were measurements for all samples in the bias range ±15V at room temperature. The results shows the increasing in carbon nanotubes concentration
... Show MoreThis work aimed to study the effect of laser surface treatment on the mechanical characteristics and corrosion behaviour of grey cast iron type A159. Many technical applications used conventional surface treatment, but laser surface hardening has recently been used to enhance the surface properties of many alloys. The mechanical characteristics, including microstructure, microhardness, and wear resistance of A159 grey cast iron, were studied, in addition to corrosion behaviour. The experimental laser parameters in this work were 0.9, 1.2, and 1.5 KW power with continuous wave carbon dioxide lasers with scanning speeds of 10 and 12 mm/s were used. The results found that phase-transitional alterations in microstructure were influenced by lase
... Show MoreThe ground state proton, neutron and matter densities, the corresponding rms radii and charge form factors of a dripline nuclei 6He, 11Li, 12Be and 14Be have been studied via a three–body model of (Core + n + n). The core–neutron interaction takes the form of Woods-Saxon (WS) potential. The two valence neutrons of 6He, 11Li and 12Be interact by the realistic interaction of ZBMII while those of 14Be interact via the realistic interaction of VPNP. The core and valence (halo) density distributions are described by the single-particle wave functions of the WS potential. The calculated results are discussed and compared with the experimental data. The long tail performance is clearly noticed in the calculated neutron and matter density distr
... Show MoreThe research aims to determine the mix of production optimization in the case of several conflicting objectives to be achieved at the same time, therefore, discussions dealt with the concept of programming goals and entrances to be resolved and dealt with the general formula for the programming model the goals and finally determine the mix of production optimization using a programming model targets to the default case.
Abstract: Stars whose initial masses are between (0.89 - 8.0) M☉ go through an Asymptotic Giant Branch (AGB) phase at the end of their life. Which have been evolved from the main sequence phase through Asymptotic Giant Branch (AGB). The calculations were done by adopted Synthetic Model showed the following results: 1- Mass loss on the AGB phase consists of two phases for period (P <500) days and for (P>500) days; 2- the mass loss rate exponentially increases with the pulsation periods; 3- The expansion velocity VAGB for our stars are calculated according to the three assumptions; 4- the terminal velocity depends on several factors likes metallicity and luminosity. The calculations indicated that a super wind phase (S.W) developed on the A
... Show More