Thin filis have been prepared from the tin disulphide (SnS2 ), the pure and the doped with copper (SnS2:Cu) with a percentages (1,2,3,4)% by using ahemical spray pyrolysis techniqee on substrate of glass heated up to(603K)and sith thicknesses (0.7±0.02)?m ,after that the films were treated thermally with a low pressure (10-3mb) and at a temperature of (473K) for one hour. The influence of both doping with copper and the thermal treatment on some of the physical characteristics of the prepared films(structural and optical) was studied. The X-ray analysis showed that the prepared films were polycrystalline Hexagonal type. The optical study that included the absorptance and transmitance spectra in the weavelength range (300-900)nm demonstrated that the value of absorption coefficient (?) was greater than (104 cm-1) for the pure and doped films and that the electronic transitions at the fundamental absorption edge were of the indirect kind whether allowed or forbidden and the value of the optical energy gap in the case of the indirect transition, the allowed decreased from (2 eV) to (1.8,1.7,1.5,1.2)eV at the doping percentages (1,2,3,4)% respectively, also it was found that the value of energy gap for the pure and doped films increased after annealing. Tthe absorption and transmission spectra were used to find the optical constant including refractive index(n), extinction coefficient (k), imaginary and real part of dielectric constant (?1 &?2) , and it was found that all the optical constant was affected by changing the doping percentages; in addition to being affected after treating the films thermally
Low- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show MoreCrystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O<
... Show MoreIn this study, Cobalt Oxide nanostructure was successfully prepared using the chemical spray pyrolysis technique. The cobalt oxide phase was analysed by X-ray Diffraction (XRD) and proved the preparation of two cobalt oxide phases which are Co3O4 and CoO phases. The surface morphology was characterized by Scanning Electron Microscope (SEM) images showing the topography of the sample with grain size smaller than 100 nm. The optical behavior of the prepared material was studied by UV-Vis spectrophotometer. The band gap varied as 1.9 eV and 2.6 eV for Co3O4 prepared from cobalt sulphate precursor, 2.03 eV and 4.04 eV for Co3O4 prepared from cobalt nitrate precursor, 2.04 eV and 4.01 eV for CoO prepared from cobalt chloride precursor where th
... Show MoreIn this paper, SiO2 nanoparticles thin films were synthesised at different PH values of solution by sol gel method at fixed temperature (25oC) and molar ratio (R =H2O/precursor) of (Tetra Ethyl Ortho Silicate) TEOS as precursor at (R=1). The structure and optical properties of the thin films have been investigated. All thin films were tested by using X-RAY diffraction. All X-RAY spectrum can be indexed as monoclinic structure with strong crystalline (110) plane. The morphological properties of the prepared films were studied by SEM. The results indicate that all films are in nano scale and the particle size around (19-62) nm .The size of silica particles increases with increasing PH value of solution where both the rate of hydrolysis and
... Show MorePorous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begi
Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI
Cerium oxide CeO2, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreCerium oxide (CeO2), or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the eect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show More