This study was conducted for evaluating the cytotoxic effect of heat stable enterotoxin a (STa) produced by enterotoxigenic Escherichia coli on the proliferation of primary cancer cell cultures, obtained from tumor samples that were collected from (13) cancer patients and as follows: (five colon cancer patients, two bladder cancer patients, two breast cancer patients, two stomach cancer patients and two lung cancer patients), and on normal cell line (rat embryonic fibroblast / REF) (in vitro) with the use of different concentrations starting from (1) mg/ml and ending with (0.0002) mg/ml by making two fold serial dilutions by using the 96- well microtiter plate, and in comparison with negative (PBS) and positive (MMC, at concentration of 10 µg/ml) controls . Results showed that, after (24) hours of exposure to STa, the growth of all primary cancer cell cultures obtained from colon cancer patients was inhibited by STa treatment and this inhibition was concentration dependent. Also it was shown that the cytotoxic effect of the high concentration of STa was close to that seen after MMC treatment. While no differences were seen in the growth of all primary cancer cell cultures that were obtained from the other cancer patients, which mean that STa treatment neither inhibit nor enhanced their growth. At the same time STa did not show or has any cytotoxic effect on the normal cell line (REF).
A simple chemistry method approach was used to synthesise new ligand derivate from L-ascorbic acid and its complexes. All of them were water-soluble and are used quite extensively in the medical and pharmaceutical fields. This study synthesised the new ligand derivative from L-ascorbic acid-base using the following steps: A 5,6-O-isopropylidene-L-ascorbic acid was prepared by reacting dry acetone with L-ascorbic acid followed by reacting it with trichloroacetic acid to yield [chloro(carboxylic)methylidene]-5,6-O-isopropylidene-L-ascorbic acid in the second stage. In the third stage, the derivative was reacted with (methyl(6-methyl-2-pyridylmethyl)amine to create a new ligand (ONMILA). This novel ligand was identified using a number
... Show MoreThe N-[(2,3-dioxoindolin-1-yl)-N-methylbenzamide] was prepared by the reaction of acetanilide with isatin then in presence of added paraformaldehyde, the prepared ligand was identified by microelemental analysis, FT.IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following selected metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio, yielded a series of complexes of the general formula [M(L)2Cl2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). From the obtained data the octahed
... Show MoreIn present work, new tetra-dentate ligand, titled 3,5-bis ((E)-5-Bromo-2-hydroxy benzylidene amino) benzoic acid (H3L), was prepared via an acid-catalyzed condensation process. New four metallic ligand complexes with Co(II), Ni(II), Cu(II) and Zn(II) ions, were also prepared from the refluxing of equivalent moles. Ligand's structure and its complexes; were confirmed by numerous characterization methods, including Ultraviolet-Visible, Infrared, Mass Spectrometer, 1H and 13C Nuclear Magnetic Resonance spectra, atomic absorption, magnetic moments, and molar conductivity measurements. The results of the spectroscopic analyzes proved that the prepared ligand acts as tetradentate bi-ionic ligand and it was bond
... Show More2-benzamide benzothiazole complexes of Pd(II) , Pt(IV) and Au(III) ions were prepared by microwave assisted radiation. The ligand and the complexes were isolated and characterized in solid state by using FT-IR, UV-Vis spectroscopy, flame atomic absorption, elemental analysis CHNS , magnetic susceptibility measurements , melting points and conductivity measurements. The nature of complexes in liquid state was studied by following the molar ratio method which gave results approximately identical to those obtained from isolated solid state; also, stability constant of the prepared complexes were studied and found that they were stable in molar ratio 1:1.The complexes have a sequar planner geometry except Pt(IV) complex has octahedral .
... Show Moreالوصف A simple chemistry method approach was used to synthesise new ligand derivate from L-ascorbic acid and its complexes. All of them were water-soluble and are used quite extensively in the medical and pharmaceutical fields. This study synthesised the new ligand derivative from L-ascorbic acid-base using the following steps: A 5, 6-O-isopropylidene-L-ascorbic acid was prepared by reacting dry acetone with L-ascorbic acid followed by reacting it with trichloroacetic acid to yield [chloro (carboxylic) methylidene]-5, 6-O-isopropylidene-L-ascorbic acid in the second stage. In the third stage, the derivative was reacted with (methyl (6-methyl-2-pyridylmethyl) amine to create a new ligand (ONMILA). This novel ligand was identified using
... Show MoreMixed ligands reaction of [2-[(3-hydroxyphenyl)diazinyl]-1,2-benzothiazol-3(2H)-one-1,1-dioxide] (H2L, primary ligand) and bipyridyl (secondary ligand) with salts of Cr(III), Mn(II), Fe(III), Co(II) and Ni(II) was performed. A series of air-stable complexes with distinctive octahedral moieties was created by equal molar ratio (1:1:1). The formation of these compounds was verified using detecting analysis techniques incorporating mass spectra, which validated the achieved geometries. Fourier transform infrared (FTIR) analysis demonstrated how the ligands (H2L and bipyridyl) are chelated as tridentate (ONO) and bidentate (NN) groups, respectively and the coordination with the metal ions. Thermal decomposition studies using pyrolysis (
... Show MoreA new Schiff base ligand [L] [3-methyl-9,10 phenyl -6,7 dihydro-5,8 –dioxo-1,2 diazo –cyclo dodecu 2,11-diene ,4-one ] and its complexes with (Co(II), Ni(II), Cu (II), Zn(II) and Cd(II)) were synthesis.This ligand was prepared in three steps, in the first step a solution of salicyladehyed in methanol reacted under refluxed with hydrazine monohydrate to give an (intermediate compound 1) which reacted in the second step with sodium pyruvate to give an (intermediate compound 2) which gave the ligand [L] in the three step when it reacted with 1,2- dichloro ethane.The complexes were synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods [IR, UV-
... Show MoreA new mixed ligand complexes were prepared by reaction of quinoline -2-carboxylic acid (L1) and 4,4?dimethyl-2,2?-bipyridyl (L2) with V(IV),Cr(III), Rh(III), Cd(II) and Pt(IV) ions. These complexes were isolated and characterized by (FT-IR) and (UV-Vis) spectroscopy, elemental analysis, flame atomic absorption technique, thermogravimetric analysis, in addition to magnetic susceptibility and conductivity measurements. Most complexes were mononuclear and with octahedral geometry, except Cd (II) with tetrahedral geometry, and V (IV) with square pyramidal geometry. A theoretical treatment of the ligands and the prepared complexes in gas phase was done using two programs Hyperchem.8 and Gaussian program (GaussView Currently Available Versions (
... Show MoreThe new azo dye was synthesized via the reaction of the diazonium salt form of 3-aminophenol with 2-hydroxyquinoline. This dye was then used to access a series of complexes with the chlorides of manganese, iron, zinc, cadmium, and vanadium sulfate. The prepared ligand and its complexes were characterized by FT-IR spectroscopy, UV-visible spectroscopy, mass spectrometry, thermogravimetric analysis, differential scanning calorimeter, and microelemental analysis. Conductivity, magnetic susceptibility, metal content, and chlorine content of the complexes were also measured. The ligand and cadmium complex were identified using1H NMR and 13C NMR spectroscopy. The results showed that the shape of the ligand is a trigonal planner, and the c
... Show More