New, simple and sensitive batch and reverse FIA spectrophotometric methods for the determination of doxycycline hyclate in pure form and in pharmaceutical preparations were proposed. These methods based on oxidative coupling reaction between doxycycline hyclate and 3-methylbenzothiazolinone-2-hydrazone hydrochloride (MBTH) in the presence ammonium ceric sulfate in acidic medium, to form green water-soluble dye that is stable and has a maximum absorbance at 626 nm. A calibration graph shows that a Beer's law is obeyed over the concentration range of 1-80 and 0.5-110 ?g.mL-1 of DCH for the batch and rFIA respectively with detection limit of 0.325 ?g.mL-1 of DCH for r-FIA methods. All different chemicals and physical experimental parameters affecting the development and stability of the colored product were carefully studied. The proposed methods were successfully applied for the determination of DCH in pharmaceutical preparations.
This work studied the electrical and thermal surface conductivity enhancement of polymethylmethacrylate (PMMA) clouded by double-walled carbon nanotubes (DWCNTs) and multi-walled carbon nanotube (MWCNTs) by using pulsed Nd:YAG laser. Variable input factors are considered as the laser energy (or the relevant power), pulse duration and pulse repetition rate. Results indicated that the DWCNTs increased the PMMA’s surface electrical conductivity from 10-15 S/m to 0.813×103 S/m while the MWCNTs raised it to 0.14×103 S/m. Hence, the DWCNTs achieved an increase of almost 6 times than that for the MWCNTs. Moreover, the former increased the thermal conductivity of the surface by 8 times and the later by 5 times.
Face Identification system is an active research area in these years. However, the accuracy and its dependency in real life systems are still questionable. Earlier research in face identification systems demonstrated that LBP based face recognition systems are preferred than others and give adequate accuracy. It is robust against illumination changes and considered as a high-speed algorithm. Performance metrics for such systems are calculated from time delay and accuracy. This paper introduces an improved face recognition system that is build using C++ programming language with the help of OpenCV library. Accuracy can be increased if a filter or combinations of filters are applied to the images. The accuracy increases from 95.5% (without ap
... Show MoreA frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co
... Show More
CD-nanosponges were prepared by crosslinking B-CD with diphenylcarbonate (DPC) using ultrasound assisted technique. 5-FU was incorporated with NS by freeze drying, and the phase solubility study, complexation efficiency (CE) entrapment efficiency were performed. Also, the particle morphology was studied using SEM and AFM. The in-vitro release of 5-FU from the prepared nanosponges was carried out in 0.1N HCl.
5-FU nanosponges particle size was in the nano size. The optimum formula showed a particle size of (405.46±30) nm, with a polydispersity index (PDI) (0.328±0.002) and a negative zeta potential (-18.75±1.8). Also the drug entrapment efficiency varied with the CD: DPC molar ratio from 15.6 % to 30%. The SEM an
... Show MoreComplexes reaction of Fe+2, Cd+2, Hg+2 and Ag+ with the 2-thiotolylurea were prepared in ethanolic medium with the (1:1) M:L ratio yielded a series of neutral complexes. The prepared complexes were characterized using flame atomic absorption, micoelemental analysis (C.H.N), chloride content (Mohr Method) , FT.IR and UV-Vis spectroscopic, as well as magnetic susceptibility and conductivity measurement. From the above data, the proposed molecular structure for Fe+2, Cd+2 and Hg+2 complexes are tetrahedral geometry while Ag+ complex is trigonal structure.
Background: Both bladder cancer and schistosomiasis are endemic in Egypt. The former has a unique epidemiological pattern, which has been linked to bladder infestation by Schistosoma. The last decades have witnessed a great reduction in the infection rate of schistosomiasis and a decline in the incidence and changes in the patterns of bladder cancer. Whether these changes are linked to each other or a co-incidence is a subject of investigations.
Method: Literature on epidemiological data of bladder cancer and Schistosoma in Egypt was searched for in Medline, Scopus, PubMed, and Google Scholar. Furthermore, a hand search for literature and reports released by the Egyptian government and involved agencies was perfo
... Show MoreSome new complexes of 4-(5-(1,5-dimethyl-3-oxo-2-phenyl pyrazolidin-4- ylimino)-3,3-dimethyl cyclohexylideneamino) -1,5- dimethyl-2- phenyl -1H- pyrazol -3(2H) –one (L) with Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) were prepared. The ligand and its metal complexes were characterized by phisco- chemical spectroscopic techniques. The spectral data were suggested that the (L) as a neutral tetradentate ligand is coordinated with the metal ions through two nitrogen and two oxygen atoms. These studies revealed Octahedral geometries for all metal complexes, except square planar for Pd(II) complex. Moreover, the thermodynamic activation parameters, such as ?E*, ?H, ?S, ?G and K are calculated from the TGA curves using Coa
... Show MoreElectrochemical oxidation in the presence of sodium chloride used for removal of phenol and any other organic by products formed during the electrolysis by using MnO2/graphite electrode. The performance of the electrode was evaluated in terms fraction of phenol and the formed organic by products removed during the electrolysis process. The results showed that the electrochemical oxidation process was very effective in the removal of phenol and the other organics, where the removal percentage of phenol was 97.33%, and the final value of TOC was 6.985 ppm after 4 hours and by using a speed of rotation of the MnO2 electrode equal to 200 rpm.