This research includes the synthesis of some new different heterocyclic derivatives of 5-Bromoisatin. New sulfonylamide, diazine, oxazole, thiazole and 1,2,3-triazole derivatives of 5-Bromoisatin have been synthesized. The synthesis process started by the reaction of 5-Bromoisatin with different reagents to obtain schiff bases of 5-Bromoisatin intermediate compounds(1, 8, 19) by using glacial acetic acid as a catalyst in three routes. The first route, 5-Bromoisatin reacted with p-aminosulfonylchloride to product compound(1), then converted to sulfonyl amide derivatives(2-7) by the reaction of compound(1) with different substituted primary aromatic amine in absolute ethanol. The second route includes the reaction of 5-Bromoisatin reacted with ethyl glycinate to give 5-bromo-3-(Ethyl imino acetate)-2-oxo indole(8), which undergo react with hydrazine hydrate 80% to obtain hydrazine derivatives(9) that react with different acid anhydrides to obtain diazine derivatives(10-14). Also compound(8) reacts with urea and thiourea to give compounds(15,16) which undergo cyclization with p-bromophenacylbromide in absolute ethanol as a solvent to obtain oxazole (17) and thiazole (18), respectively. The third route included the reaction of 5-Bromoisatin with p-phenylenediamine in ethanol to obtain compound(19) which is converted to new substitutes 1,2,3-triazole derivatives(22,23) by diazotation of compound(19) and treating the resulted salt(20) with sodium azid, then acetylaceton or ethylacetoacetate, respectively. Newly synthesized compounds were identified by spectral methods. (FTIR, 1H-NMR, 13C-NMR) and measurements of some of its physical properties and also some specific reactions. Furthermore the effects of the synthesized compounds were studied on some strains of bacteria.
The present study aimed to assess the antibacterial activity of peanut (Arachis hypogaea L.) skin extracts. The phytochemical analysis of the peanut skin extracts was investigated, the result showed a strong presence of flavonoids, phenols, alkaloids and tannins in methanol and ethyl acetate extracts. Antibiotic susceptibility of the bacterial isolates was performed on seven antibiotics represented by Amikacin, Tetracycline, Ciprofloxacin, Chloramphenicol, Ticarcillin, Cefotaxime and Gentamicin by disc diffusion method. The antibiogram for studied isolates revealed high level resistance of A. baumannii to all of the antibiotics under test except amikacin, while Staph. aurous was resistance to Chloramphenicol and Cefotxime and sensitive to A
... Show MoreAddition chloro acetyl isothiocyanate (C3H2ClNOS) with 3-Aminoaceto phenone (C8H9NO) to prepare a fresh Ligand [N-(3-acetyl phenyl carbamothioyl)-2-chloroacetamide](L). The ligand (L) behaves as bidentate coordinating through O and S donor with metal ions, the general formula of all complexes [M(L)2(Cl)2](M+2 = Manganese(II), Cobalt(II), Cadmium(II) and Mercury(II)). Compounds were investigation by Proton-1, Carbon -13 NMR spectra (ligand (L) only), Element Microanalysis for C, N, H, O, S, Fourier-transform infrared, UV visible, Conductance
Therapeutically and prophylactically using Microspheres containing doxycycline isolated from shell of shrimp. Low molecule weight poly lactic acid was prepared. In this study, Poly lactic acid (PLA)/ poly vinyl alcohol (PVA)/poly ethyleneglycol(PEG) loading doxycycline blend solutions was prepared. Also Poly lactic acid (PLA)-Tannin blend via solvent evaporation method was prepared. Microspheres of chitosan/gelatin microsphere loading doxycycline was prepared by emulsion crosslinking technique. Both microsphere and blends were characterized by Fourier transform infrared (FTIR) spectrophotometer. The FTIR spectra were shown distinguish bands. The in vitro release of doxcycline from its matrix at pH 7 was studied. The prophylactic
... Show MoreNew metal ions complexes of tridentate ligand (1-((dicyclohexylamino) methyl)-3-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrzol-4-ylimino) indolin-2-one) have been synthesized and characterized by chemical-physical analysis. The ligand acts as a tridentate for the complexation reaction with all metal ions. The new complexes, possessing the general formula [M(L)Cl]Cl where M=[Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Hg(II) ] ,show tetrahedral geometry. All complexes ,except Pd(II) complex which has a square planar geometry and Pt(IV) which show an octahedral geometry. The geometry of the prepared compounds has been proposed in another method theoretically by using one of the calculation molecular programs (Hype
... Show MoreNitrogen heterocycles are of a special interest because they constitute an important class of natural and non natural products, many of which exhibit useful biological activities.Among these nitrogen heterocycles are 1, 3, 4-thiadiazole containing compounds. The therapeutic effects of these derivatives have been well studied for a number of pathological conditions including inflammation, pain, or hypertension. Moreover, synthesis of thiadiazoles has attracted wide-spread attention due to their diverse applications as antibacterial, anticancer, antifungal anti-inflammatory and antidepressant agents.According to this information’s new derivatives of 1, 3, 4-thiadiazole were designed and synthesized and in the hope of having some act
... Show MoreNew metal ion complexes were synthesized with the general formula; K[PtLCl4], [ReLCl4] and K[ML(Cl)2] where M = Pd(II), Cd(II), Zn(II) and Hg(II), from the Azo ligand (HL) [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] (HL) the ligand was synthesized from (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol). The ligand and its metal complexes are characterized by phisco- chemical spectroscopic techniques (FT.IR, UV-Vis and Mass spectra, elemental analysis, molar conductivity, Atomic Absorption, Chloride contain and magnetic susceptibility). The spectral data suggest that the (HL) behaves as a bidentate ligand in all complexes. These studies revealed tetrahedral geometries for all metal complexes
... Show MoreNi and Cd complexes of new Schiff base derived from 5-Amino-2-phenyl-2,4-dihydro-pyrazol-3-one with 4-chlorobenzalaldehyde (A) , 2-Hydroxy-benzalaldehyde (B) and 4-Hydroxy-benzaldehyde (C) have been prepared and characterized by elemental analysis , molar conductivity measurements , FTIR , UV- vis , 1HNMR, mass spectrometer and magnetic susceptibility. Analytical data revealed that six complexes were a distorted tetrahedral geometry and exhibited (1:1) metal :ligand ratio. The biological activity for the three ligands and its complexes were studied
The reaction of some new Schiff bases ( 2-[(2-Amino – ethylimino)-methyl]-R , 2-({2-[(R-benzylidene)-amino]-ethylimino}-methyl)-R with Benzoyl chloride or Acetyl chloride were carried out. Subsequent reactions of these products N-(2-Amino-ethyl)-N-[Chloro-(R) –methyl]-benzamide or N-(2-{?-[chloro-(R) –methyl]-amino}-ethyl)-N-[chloro-(R) –methyl]- benzamide with thiourea afforded thioureas compounds. The synthesized compounds were confirmed by their IR,UV,spectra and C.H.N. analysis.
In the present paper we report the synthesis of a new ligand [HL][(2-1-[(2-hydroxy-benzylidene)-hydrazono]-ethyl) benzene-1, 3, 5-triol and its complexes with (Mn", Fe", Cd", and Hg") The ligand was prepared in two steps. In the first step a solution of salicylaldehyed in methanol reacted under reflux with hydrazinemonohydrate to give an intermediate compound which reacted in the second step with 2, 4, 6-trihydroxidernonohydrate giving the tientioned ligand. The complexes were synthesis by direct reaction of the corresponding metal chloride with ligand. The ligand and the complexes have been characterized by spectroscopic methods [" H NMR, IR, UV-Vis,, atomic absorption], HPLC microanalysis along with conductivity measurements. From the abo
... Show MoreThis work comprises the synthesis of new thioxanthone derivatives containing C-substituted thioxanthone. To obtain these derivatives, the o-mercapto benzoic acid was chosen as the starting material, which was reacted with dry benzene in sulfuric acid (98 %) to produce the thioxanthone (1). The 2,7-(disulfonyl phosphine imine) thioxanthone (4-8) were prepared from reaction of compound (1) with chlorosulfonic acid gave 2,7-(disulfonyl chloride) thioxanthone (2). Treatment of (2) with sodium azide to produce 2,7-(disulfonyl azide) thioxanthone (3). Condensation of (3) with phosphorus compounds afforded compounds (4-8). The 2,7-(disulfonamide) thioxanthone (9-21) was obtained when co
... Show More