The present work involved synthesis of serval new substituted tetrazole via Schiff bases for trimethoprim drug by two steps. The first step involved direct reaction of different ketones and aldehydes with trimethoprim producing the corresponding Schiff bases (1-10), whereas the second step, involved preparation new tetrazoles derivatives (11-20) through reaction of the ready Schiff bases (in the first step) with sodium azidein in dioxin. The prepared compounds were characterized by UV, FT-IR, and some of them by 13C-NMR, 1H-NMR spectroscopy and physical properties.
new six mixed ligand complexes of some transition metal ions Manganese (II), Cobalt(II), Iron (II), Nickel (II) , and non transition metal ion zinc (II) And Cadmium(II) with L-valine (Val H ) as a primary ligand and Saccharin (HSac) as a secondary ligands have been prepared. All the prepared complexes have been characterized by molar conductance, magnetic susceptibility infrared, electronic spectral, Elemental microanalysis (C.H.N) and AA . The complexes with the formulas [M(Val)2(HSac)2] M= Mn (II) , Fe (II) , Co(II) ,Ni(II), Cu (II),Zn(II) and Cd(II) L- Val H= (C5H11NO2) , C7H5NO3S The study shows that these complexes have octahedral geometry; The metal complexes have been screened for their in microbiological activities against bacteria.
... Show MoreBecause of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectro
... Show MoreThe research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL
The preliminary test of the compounds N [2– (3,4–dimethoxy nitrobenzene oxazepine– 2,3–dihydro–4,7–dione]–5–mercupto–2–amino–1,3,4–thiadiazol [A] and N [ 2–anthralidene– 5– ( 2–nitrophenyl ) –1,3–oxazepine–4,7–dione–2–d](5–mercapto–1,3,4–thiadiazole–2–amin) [B] , showed that they possess high activity against some positive and negative bacteria , like pseudomonas aeruginosa (pseudo.), Escherichia coli (E-coli), staphylococcus aureus (sta.) and Bacillus subtilis (Ba.) and finally there is a study of the effect of some antibiotics like streptomycin (S), gentamycin (GN), chloramphenicol (C) and Nalitixic acid (NA) in order to compare the differences in effects. In the present study, results
... Show MoreDrug hypersensitivity involves the activation of T cells in an HLA allele–restricted manner. Because the majority of individuals who carry HLA risk alleles do not develop hypersensitivity, other parameters must control development of the drug-specific T cell response. Thus, we have used a T cell–priming assay and nitroso sulfamethoxazole (SMX-NO) as a model Ag to investigate the activation of specific TCR Vβ subtypes, the impact of programmed death -1 (PD-1), CTL-associated protein 4 (CTLA4), and T cell Ig and mucin domain protein-3 (TIM-3) coinhibitory signaling on activation of naive and memory T cells, and the ability of regulatory T cells (Tregs) to prevent responses. An expa