In this study NiO - CoO bimetallic catalysts are prepared with two Ni/Co ratios (70:30 and 80: 20) using the precipitation method of nitrate salts. The effects of Ni /Co ratio and preparation methods on the catalyst are analyzed by using different characterization techniques, i.e. atomic absorption (AA) , XRD, surface area and pore volume measurements according to the BET method . The results indicate that the best catalyst is the one containing the percentage of Ni :Co ( 70 : 30 ). Experiments indicate that the optimal conditions to prepare catalyst are stirring for three hours at a temperature of 60oC of the preparation , pH= (8-9) , calcination temperature at 400oC for two hours using the impregnation method . The catalyst activity is studied through the application in the process of oxidative desulfurization of gas oil fuel . The optimal conditions for deep oxidative desulfurization processes are : catalysts 3% , 2 gm. Na2 CO3 , refluxe time 3 hours at 400 C , using a mechanical stirrer at moderate speed (700 rpm), the volume ratio of gas oil : H2O2 : acetic acid is 10: 1: 0.5 and extracted with 1:1 ratio of acetonitrile to the gas oil for three times . The results indicate that the catalysts are efficient to remove sulfur from gas oil depending on temperature, time, concentration of hydrogen peroxide H2O2 30 % and solvent used for extraction. The efficiency of the best catalyst gives a maximum sulfur removal reaching 68.97%.
The acidity of spent lubricant was treated using sodium hydroxide solution. The effect of three variables on the treatment have been studied . These are mixing time rangingfrom 5-35 minutes, NaOH to lubricant weight ratio ranging from 0.25-1.25 and weight percentage of NaOH ranging from 2-6 % .
The experimental design of Box-Wilson method is adopted to find a useful relationship between the three controllable variables and the lowering in the acidity of the spent lubricant. Then the effective variables and interactions are identified using the statistical analysis(F-test) of three variable fractional design. The mathematical model is well represented by a second order polynomial.
By
... Show MoreThis study focuses on the use of an optimum amount of Sodium Polyacrylate (SP) for designing cement slurry with the high performance of rheological properties and displacement efficiency. A laboratory study has been carried out on the cement slurry which prepared with SP as superabsorbent polymer. SP has been providing an internal water source that helps in the hydration process, and curing and ultimately increases the cement strength. Also improves the cement performance by improving the cement stability. Several batches were prepared to determine the proper amount of SP to add it in the cement slurry. Also, we studied its effect on cement density, amount of free water in order to observe the rheological properties, and thickening time.
... Show Moreناقش البحث في طياته عدداً من القضايا الرئيسة المتعلقة بالتقييم الاستراتيجي والإطار العام للخطة الاستراتيجية المقترحة لشركة نفط ميسان للسنوات الخمس المقبلة (2020_2024)، وهدف هذا البحث يتمحور في تقييم عملية صياغة استراتيجية شركة نفط ميسان لتحديد نقاط القوة وتعضيدها ومواطن الضعف ومحاولة معالجتها لتجنب الوقوع بها عند وضع استراتيجية للسنوات القادمة، وعلى هذا الاساس فان مشكلة البحث تكمن في مدى نجاح الاستراتي
... Show MoreThis work deals with kinetics and chemical equilibrium studies of esterification reaction of ethanol with acetic acid. The esterification reaction was catalyzed by an acidic ion exchange resin (Amberlyst- 15) using a batch stirred tank reactor. The pseudo-homogenous and Eley-Rideal models were successfully fitted with experimental data. At first, Eley-Rideal model was examined for heterogeneous esterification of acetic acid and ethanol. The pseudo-homogenous model was investigated with a power-law model. The apparent reaction order was determined to be (0.88) for Ethanol and (0.92) for acetic acid with a correlation coefficient (R2) of 0.981 and 0.988, respectively. The reaction order was determined to be 4.1087x10-3 L0.8/(mol0.8.min) with
... Show MoreCilnidipine is a dihydropyridine class of calcium channel blockers, it is classified as a BCS class II drug, characterized by a low oral bioavailability of 13%. Consequently, the utilization of nanoparticle preparation is anticipated to enhance its bioavailability. The objective of the research is to integrate cilnidipine nanoparticles into oral films as a means of enhancing patient adherence. The optimal polymers for producing Cilnidipine films were PVA cold and or HPMC E5 at different concentrations using a casting technique with glycerol as a plasticizer. The Nano suspension-based preparation of Cilnidipine's oral film containing the combination of polymers exhibited a significant enhancement in vitro dissolution, with a percentage excee
... Show MoreThis study explored the use of industrial acidic crude palm oil (ACPO) for biodiesel production, facing a significant obstacle due to its high free fatty acid (FFA) content, which complicates the biodiesel production process. Typically, esterification is employed to convert FFAs into fatty acid methyl ester (FAME). Herein, the effectiveness of tungstosilicic acid hydrate (TSAH) as an unsupported heteropoly acid (HPA) catalyst for FFA esterification in ACPO was investigated. The FFA content was reduced from 8.43% to 0.95% under optimum conditions (4 wt% catalyst dosage, a methanol to oil molar ratio of 10:1, 150 min and a temperature of 60°C). Noteworthy, the TSAH catalyst showed stability over 7
The performance of H2S sensor based on poly methyl methacrylate (PMMA)-CdS nanocomposite fabricated by spray pyrolysis technique has been reported. XRD pattern diffraction peaks of nano CdS has been indexed to the hexagonally wurtzite structured The nanocomposite exhibits semiconducting behavior with optical energy gap of4.06eV.SEM morphology appears almost tubes like with CdS/PMMA network. That means the addition of CdS to polymer increases the roughness in the film and provides high surface to volume ratio, which helps gas molecule to adsorb on these tubes. The resistance of PMMA-CdS nanocomposite showed a considerable change when exposed to H2S gas. Fast response time to detect H2S gas was achieved by using PMMA-CdS thin film sensor. The
... Show More