In this study NiO - CoO bimetallic catalysts are prepared with two Ni/Co ratios (70:30 and 80: 20) using the precipitation method of nitrate salts. The effects of Ni /Co ratio and preparation methods on the catalyst are analyzed by using different characterization techniques, i.e. atomic absorption (AA) , XRD, surface area and pore volume measurements according to the BET method . The results indicate that the best catalyst is the one containing the percentage of Ni :Co ( 70 : 30 ). Experiments indicate that the optimal conditions to prepare catalyst are stirring for three hours at a temperature of 60oC of the preparation , pH= (8-9) , calcination temperature at 400oC for two hours using the impregnation method . The catalyst activity is studied through the application in the process of oxidative desulfurization of gas oil fuel . The optimal conditions for deep oxidative desulfurization processes are : catalysts 3% , 2 gm. Na2 CO3 , refluxe time 3 hours at 400 C , using a mechanical stirrer at moderate speed (700 rpm), the volume ratio of gas oil : H2O2 : acetic acid is 10: 1: 0.5 and extracted with 1:1 ratio of acetonitrile to the gas oil for three times . The results indicate that the catalysts are efficient to remove sulfur from gas oil depending on temperature, time, concentration of hydrogen peroxide H2O2 30 % and solvent used for extraction. The efficiency of the best catalyst gives a maximum sulfur removal reaching 68.97%.
The permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.
Corrosion Resistance Enhancement for low carbon steel is very important to extend its life service, the coating process is one of the methods which can using to achieve this, and it's the most important in surface treatments to improve the properties of metals and alloys surfaces such as corrosion resistance. In this work, low carbon steel was nitrided and coated with nano zinc using gas phase coating technical, to enhance the resistance of corrosion. The process included adding two layers. The first, a nitride layer, was added by precipitating nitrogen (N) gas, and the second, a zinc (Zn) layer, was added by precipitating Zn. The process of precipitating was carried out at different periods (5, 10, and 15 minutes). Scan electron mi
... Show MoreLow grade crude palm oil (LGCPO) presents as an attractive option as feedstock for biodiesel production due to its low cost and non-competition with food resources. Typically, LGCPO contains high contents of free fatty acids (FFA), rendering it impossible in direct trans-esterification processes due to the saponification reaction. Esterification is the typical pre-treatment process to reduce the FFA content and to produce fatty acid methyl ester (FAME). The pre-treatment of LGCPO using two different acid catalysts, such as titanium oxysulphate sulphuric acid complex hydrate (TiOSH) and 5-sulfosalicylic acid dihydrate (5-SOCAH) was investigated for the first time in this study. The optimum conditions for the homogenous catalyst (5-SOCAH) wer
... Show MoreAbstract
Itraconazole is a triazole antifungal given orally for the treatment of oropharyngeal and vulvovaginal candidiasis, for systemic infections including aspergillosis, candidiasis, and for the prophylaxis of fungal infections in immunocompromised patients.
The study aimed to formulate a practical water-insoluble Itraconazole, with insufficient bioavailability as nanosuspension to increase aqueous solubility and improve its dissolution and oral bioavailability.
Itraconazole nanosuspension was produced by a
... Show MorePrediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered
... Show More
