The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was transformed using transform domains Discrete Wavelet Transform(DWT) in order to obtain the system features .At the last stage the approximation coefficients result from the Discrete Wavelet Transform were fed to the Artificial Neural Networks and to the Fuzzy Logic, then compared between two results to obtain the best for classifying fetal heart rate.
This study addresses the issue of academic writing in English by comparing pragmatic argumentation in the writing of 40 graduate students studying at Iraqi universities (SSIU) with the writing of 40 graduate students studying at American universities (SSAU). In these 80 theses, six selected aspects of academic writing were analyzed: (a) paragraph structure, (b) length and construction of sentences, (c) organization of information in sentences, (d) vocabulary, (e) topic sentences, and (f) discourse markers. This study seeks to go beyond the traditional and often onedimensional analysis of pragmatics of argumentation in English academic writing to distinguish and describe different aspects of academic writing and their results when used by EF
... Show MoreThe soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.
Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.
The main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.
Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.
The purpose of this paper is to give some results theorems , propositions and corollaries concerning new algebraic systems flower , garden and farm with accustomed algebraic systems groupoid , group and ring.
A new class of generalized open sets in a topological space, called G-open sets, is introduced and studied. This class contains all semi-open, preopen, b-open and semi-preopen sets. It is proved that the topology generated by G-open sets contains the topology generated by preopen,b-open and semi-preopen sets respectively.
Weibull Distribution is one of most important distribution and it is mainly used in reliability and in distribution of life time. The study handled two parameter and three-parameter Weibull Distribution in addition to five –parameter Bi-Weibull distribution. The latter being very new and was not mentioned before in many of the previous references. This distribution depends on both the two parameter and the three –parameter Weibull distributions by using the scale parameter (α) and the shape parameter (b) in the first and adding the location parameter (g)to the second and then joining them together to produce a distribution with five parameters.
... Show More