Preferred Language
Articles
/
bsj-2679
Classification of fetal abnormalities based on CTG signal
...Show More Authors

The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was transformed using transform domains Discrete Wavelet Transform(DWT) in order to obtain the system features .At the last stage the approximation coefficients result from the Discrete Wavelet Transform were fed to the Artificial Neural Networks and to the Fuzzy Logic, then compared between two results to obtain the best for classifying fetal heart rate.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 17 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
Private Backend Server Software-Based Telehealthcare Tracking and Monitoring System
...Show More Authors

In these recent years, the world has witnessed a kind of social exclusion and the inability to communicate directly due to the Corona Virus Covid 19 (COVID-19) pandemic, and the consequent difficulty of communicating with patients with hospitals led to the need to use modern technology to solve and facilitate the problem of people communicating with each other. healthcare has made many remarkable developments through the Internet of things (IOT) and cloud computing to monitor real-time patients' data, which has enabled many patients' lives to be saved. this paper presents the design and implementation of a Private Backend Server Software based on an IoT health monitoring system concerned emergency medical services utilizing biosenso

... Show More
View Publication
Scopus (30)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2011
Journal Name
Al-mustansiriyah Journal Of Science
A Genetic Algorithm Based Approach For Generating Unit Maintenance Scheduling
...Show More Authors

Publication Date
Sat Nov 02 2019
Journal Name
Advances In Intelligent Systems And Computing
Modified Opposition Based Learning to Improve Harmony Search Variants Exploration
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Handbook Of Polymer Nanocomposites For Industrial Applications
Polyaniline-graphite nanocomposite based modified cladding optical fiber gas sensors
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Oct 01 2015
Journal Name
Engineering And Technology Journal
Genetic Based Optimization Models for Enhancing Multi- Document Text Summarization
...Show More Authors

View Publication
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Enhancement Ear-based Biometric System Using a Modified AdaBoost Method
...Show More Authors

          The primary objective of this paper is to improve a biometric authentication and classification model using the ear as a distinct part of the face since it is unchanged with time and unaffected by facial expressions. The proposed model is a new scenario for enhancing ear recognition accuracy via modifying the AdaBoost algorithm to optimize adaptive learning. To overcome the limitation of image illumination, occlusion, and problems of image registration, the Scale-invariant feature transform technique was used to extract features. Various consecutive phases were used to improve classification accuracy. These phases are image acquisition, preprocessing, filtering, smoothing, and feature extraction. To assess the proposed

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Design and Implementation for 3-DoF SCARA Robot based PLC
...Show More Authors

Abstract 

This paper presents mechanical and electrical design, and implementation  process of industrial robot, 3-DoF type SCARA (selective compliment assembly robot arm),with two rotations and one translation used for welding applications.The design process also included the controller design which was based on PLC(programmable logic controller) as well as selection of mechanical and electrical components.The challenge was to use the available components in Iraq with reasonable costs. The robot mentioned is fully automated using programmable logic controller PLC(Zelio type SR3-B261BD),with 16inputs and 10 outputs. The PLC was implemented in FBD logic to obtain three different automatic motions with hi

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Neuroscience Informatics
Epileptic EEG activity detection for children using entropy-based biomarkers
...Show More Authors

View Publication
Scopus (18)
Crossref (12)
Scopus Crossref
Publication Date
Wed Oct 01 2008
Journal Name
2008 First International Conference On Distributed Framework And Applications
A strategy for Grid based t-way test data generation
...Show More Authors

View Publication
Scopus (22)
Crossref (17)
Scopus Crossref
Publication Date
Thu Jun 15 2023
Journal Name
International Journal On Engineering, Science And Technology
EEG Neuro-markers to Enhance BCI-based Stroke Patients Rehabilitation
...Show More Authors

Stroke is the second largest cause of death worldwide and one of the most common causes of disability. However, several approaches have been proposed to deal with stroke patient rehabilitation like robotic devices and virtual reality systems, researchers have found that the brain-computer interfaces (BCI) approaches can provide better results. In this study, the electroencephalography (EEG) dataset from post-stroke patients were investigated to identify the effects of the motor imagery (MI)-based BCI therapy by investigating sensorimotor areas using frequency and time-domain features and to select particular methods that help in enhancing the MI-based BCI systems for stroke patients using EEG signal processing. Therefore, to detect

... Show More
View Publication
Crossref