The spectral propetties (absorption and fluorescence) of Coumarine-47 laser dye have been studied. This type of laser dye belong the Coumarine family and it has dissolved in chloroform at different concentrations (1x10-5, 5x10-5, and 1x10-4 M) at room temperature. The achieved results have been pointed out to increase in the absorption and fluorescence as the concentration increased which are agreements with Beer – Lambert law. These have been also showed an expansion in the spectral range of absorption and fluorescence with a noticed shift in the direction of longer wavelength (Red-shift) with increasing concentration. The quantum efficiency of the dissolved C47 in chloroform has been computed by using the brevious concentrations and their results are as follows (69%, 63%, and 45%) respectively. The radiative and fluorescence lifetime have been also computed as given (6.47ns, 4.67ns, and 2.06ns) and (4,07ns, 3.22ns, and 1.47ns) respectively.
This study was carrid out to produce animal gelatin from chicken skin. Gelatin was prepared by the chemical method using HCl 2% and extraction at the temperature degree 70, 80, 90 c° and at the period of time 4, 6, 8 hours, calculated the yield, functional and sensory characteristics were measured at. The result also demonstrated that the produced gelatin have good functional properties in solubility, viscosity, gelling capacity, water absorpation, lipid binding, emulsification. viscosity was higher in gelatin prepared at 70 c° and period of extraction 8 hours and reached 1.0846 cp. Gelatin prepared were featured by highe gelling capacity at 1% for all extraction time periods. The produced gelatin was characterized by good sensory qual
... Show MoreThis paper presents the thermophysical properties of zinc oxide nanofluid that have been measured for experimental investigation. The main contribution of this study is to define the heat transfer characteristics of nanofluids. The measuring of these properties was carried out within a range of temperatures from 25 °C to 45 °C, volume fraction from 1 to 2 %, and the average nanoparticle diameter size is 25 nm, and the base fluid is water. The thermophysical properties, including viscosity and thermal conductivity, were measured by using Brookfield rotational Viscometer and Thermal Properties Analyzer, respectively. The result indicates that the thermophysical properties of zinc oxide nanofluid increasing with nanoparticle volume f
... Show MoreThe dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tes
In this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec
Many designs have been suggested for unipolar magnetic lenses based on changing the width of the inner bore and fixing the other geometrical parameters of the lens to improve the performance of unipolar magnetic lenses. The investigation of a study of each design included the calculation of its axial magnetic field the magnetization of the lens in addition to the magnetic flux density using the Finite Element Method (FEM) the Magnetic Electron Lenses Operation (MELOP) program version 1 at three different values of current density (6,4,2 A/mm2). As a result, the clearest values and behaviors were obtained at current density (2 A/mm2). it was found that the best magnetizing properties, the high
... Show MoreThe electronic properties (such as energy gap HOMO levels. LUMO levels, density of state and density of bonds in addition to spectroscopic properties like IR spectra, Raman spectra, force constant and reduced masses as a function of frequency) of coronene C24 and reduced graphene oxide C24OX , where x=1-5, were studied.. The methodology employed was Density Functional Theory (DFT) with Hybrid function B3LYP and 6-311G** basis sets. The energy gap was calculated for C24 to be 3.5 eV and for C24Ox was from 0.89 to 1.6862 eV for x=1-5 ,respectively. These energy gaps values are comparable to the measured gap of Graphene (1-2.2 eV). The spectroscopic properties were compared with experimental measurements, specificall
... Show MoreIraqi oil crudes have some of the physical and chemical characteristics that distinguish it from other types of oil crudes in the world. Some of these features such us molecular composition, rheological, viscosity and emulsions are studied carefully by researchers. In this work, a comparative study of the linear and the non-linear optical properties for typical heavy and light crude oils of Iraqi origin was studied utilizing Z-scan technique. The He -Ne laser of wavelength 632.8 nm had been used for this purpose. These samples were collected from Basra and Kut oil fields. The values of the non-linear refractive index (n2), non-linear absorption coefficient (β), and third-order electrical susceptibility (χ3) were e
... Show MoreThe Cu2SiO3 composite has been prepared from the binary compounds (Cu2O, and SiO2) with high purity by solid state reaction. The Cu2SiO3 thin films were deposited at room temperature on glass and Si substrates with thickness 400 nm by pulsed laser deposition method. X-ray analysis showed that the powder of Cu2SiO3 has a polycrystalline structure with monoclinic phase and preferred orientation along (111) direction at 2θ around 38.670o which related to CuO phase. While as deposited and annealed Cu2SiO3 films have amorphous structure. The morphological study revealed that the grains have granular and elliptical shape, with average diameter of 163.63 nm. The electrical properties which represent Hall effect were investigated. Hall coeffici
... Show More