In this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fatigue strength) of composite . The results show us the reinforcement has important act to increased resistance to the fatigue compared with specimens have non reinforcement this side the specimens reinforcement of glass fiber have resistance to fatigue and fatigue life better than the specimens reinforcement of Kevlar fiber . According to hybrid composite sample fatigue test results showed that the sample which reinforced (Kevlar - regular glass – Kevlar) has a best results which showed stress carrying the most powerful and longer fatigue life with more than (1.3 ×10 6) cycle from other hybrids , while the sample with the sample with three Kevlar reinforced layers have less resistant to fatigue
Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreBackground: This study was conducted to assess the effect of sonic activation and bulk placement of resin composite in comparison to horizontal incremental placement on the fracture resistance of weakened premolar teeth. Materials and method: Sixty sound human single-rooted maxillary premolars extracted for orthodontic purposes were used in this study. Teeth were divided into six groups of ten teeth each: Group 1 (sound unprepared teeth as a control group), Group 2 (teeth prepared with MOD cavity and left unrestored), Group 3 (restored with SonicFill™ composite), Group 4 (restored with Quixfil™ composite), Group 5 (restored with Tertic EvoCeram® Bulk Fill composite) and Group 6 (restored with Universal Tetric EvoCeram® co
... Show More
In the present research, the electrical properties which included the ac-conductivity (σac), loss tangent of dielectric (tan δ) and real dielectric constant (ε’) are studied for nano polycarbonate in different pressures and frequencies as a function of temperature these properties were studied at selective temperature gradients which are (RT-50-100-150-250)°C. The results of the study showed that the values of dielectric constant and dissipation factor increase with increasing pressure and temperature and decreases by increasing frequency. And the results of electrical conductivity showed that it increases with increasing temperature, pressure and frequency.
Glass Fiber Reinforced Polymer (GFRP) bars have gained popularity as a corrosion-resistant alternative to traditional steel reinforcement in Reinforced Concrete (RC) elements. This study investigates the flexural behavior of PRC panels reinforced with GFRP bars. The study variables included the GFRP reinforcement ratio and the number of embedded steel section distributions. Six concrete panels were fabricated, each measuring 2500 mm in length, with a rectangular cross-section of 750 mm in width and 150 mm in thickness. All panels were reinforced with GFRP bars and divided into two groups based on the reinforcement ratios of 0.532% and 0.266%. For each group, one panel served as the control specimen, while the remaining two were inte
... Show MoreBased on nonlinear self- diffraction technique, the nonlinear optical properties of thin slice of matter can be obtained. Here, nonlinear characterization of nano-fluids consist of hybrid Single Wall Carbon Nanotubes and Silver Nanoparticles (SWCNTs/Ag-NPs) dispersed in acetone at volume fraction of 6x10-6, 9x10-6, 18x10-6 have been investigated experimentally. Therefore, CW DPSS laser at 473 nm focused into a quartz cuvette contains the previous nano-fluid was utilized. The number of diffraction ring patterns (N) has been counted using Charge - Coupled- Device (CCD) camera and Pc with a certain software, in order to find the maximum change of refractive index ( of fluids. Our result show that the fraction volume of 18x10-6 is more nonli
... Show MoreAqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.