The traditional centralized network management approach presents severe efficiency and scalability limitations in large scale networks. The process of data collection and analysis typically involves huge transfers of management data to the manager which cause considerable network throughput and bottlenecks at the manager side. All these problems processed using the Agent technology as a solution to distribute the management functionality over the network elements. The proposed system consists of the server agent that is working together with clients agents to monitor the logging (off, on) of the clients computers and which user is working on it. file system watcher mechanism is used to indicate any change in files. The results were presented in real time which is minimizing the cost that represents the important factor to successful management of networks that was achieved using agents.
The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreNowadays, it is convenient for us to use a search engine to get our needed information. But sometimes it will misunderstand the information because of the different media reports. The Recommender System (RS) is popular to use for every business since it can provide information for users that will attract more revenues for companies. But also, sometimes the system will recommend unneeded information for users. Because of this, this paper provided an architecture of a recommender system that could base on user-oriented preference. This system is called UOP-RS. To make the UOP-RS significantly, this paper focused on movie theatre information and collect the movie database from the IMDb website that provides informatio
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreThe main aim of this paper are the design and implementation of a pharmaceutical inventory database management system. The system was implemented by creating a database containing information about the stored medicines in the inventory, customers making transactions with the pharmaceutical trading company (which owns the inventory), medical suppliers, employees, payments, etc. The database was connected to the main application using C sharp. The proposed system should help in manag inginventory operations which include adding/updating employees’ information, preparing sale and purchase invoices, generating reports, adding/updating customers and suppliers, tracking customer payments and checking expired medicines in order to be disposed
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
The research aims to find the impact of a proposed strategy according to the Luria model on realistic thinking among fifth-class scientific students and their achievement in mathematics. To achieve it, the experimental research method and the quasi-experimental design were used for two equal groups, one of them is a control group taught in traditional way and the other is an experimental one taught according to strategy based on Luria model. The research community represents the students of the fifth scientific class from the General Directorate of Education of Karkh First. The research sample (40) students were deliberately chosen and distributed equally between the two groups after making sure that they were equals in their previo
... Show MoreTransdermal drug delivery has made an important contribution to medical practice but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. Transdermal therapeutic systems have been designed to provide controlled continuous delivery of drugs through the skin to the systemic circulation. A transdermal patch is an adhesive patch that has a coating of drug; the patch is placed on the skin to deliver particular amount of drug into the systemic circulation over a period of time. The transdermal drug delivery systems (TDDS) review articles provide information regarding the transdermal drug delivery systems and its evaluation process as a ready reference for the research scientist who is involved
... Show MoreWith the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.