Steganography is the art of secret communication. Its purpose is to hide the presence of information, using, for example, images as covers. The frequency domain is well suited for embedding in image, since hiding in this frequency domain coefficients is robust to many attacks. This paper proposed hiding a secret image of size equal to quarter of the cover one. Set Partitioning in Hierarchal Trees (SPIHT) codec is used to code the secret image to achieve security. The proposed method applies Discrete Multiwavelet Transform (DMWT) for cover image. The coded bit stream of the secret image is embedded in the high frequency subbands of the transformed cover one. A scaling factors ? and ? in frequency domain control the quality of the stego images. The proposed algorithm is compared with wavelet based algorithm which shows a favorable results in terms of PSNR reaches to 18 dB.
Abstract: Data mining is become very important at the present time, especially with the increase in the area of information it's became huge, so it was necessary to use data mining to contain them and using them, one of the data mining techniques are association rules here using the Pattern Growth method kind enhancer for the apriori. The pattern growth method depends on fp-tree structure, this paper presents modify of fp-tree algorithm called HFMFFP-Growth by divided dataset and for each part take most frequent item in fp-tree so final nodes for conditional tree less than the original fp-tree. And less memory space and time.
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show Morethe researchers pointed that the poet relied on several means in the form of poetic images, including analogy, and the metaphor with its various elements, The chromatic component has also been used in the formation of its poetic image,and resorted to the correspondence of the senses and the symbol of two types:Self-code, public code : And we find a variety of symbolic stems from different sources, from these symbols, what is religious, including what is historical and what is legendary, and such symbols, which resorted to the rare places of his poems confined to the myths contained in the Bible, His use of the general symbols was ineffective in the poetic picture, relying on the metaphor and metaphor.
Data compression offers an attractive approach to reducing communication costs using available bandwidth effectively. It makes sense to pursue research on developing algorithms that can most effectively use available network. It is also important to consider the security aspect of the data being transmitted is vulnerable to attacks. The basic aim of this work is to develop a module for combining the operation of compression and encryption on the same set of data to perform these two operations simultaneously. This is achieved through embedding encryption into compression algorithms since both cryptographic ciphers and entropy coders bear certain resemblance in the sense of secrecy. First in the secure compression module, the given text is p
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show MoreThe interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreCloud Computing is a mass platform to serve high volume data from multi-devices and numerous technologies. Cloud tenants have a high demand to access their data faster without any disruptions. Therefore, cloud providers are struggling to ensure every individual data is secured and always accessible. Hence, an appropriate replication strategy capable of selecting essential data is required in cloud replication environments as the solution. This paper proposed a Crucial File Selection Strategy (CFSS) to address poor response time in a cloud replication environment. A cloud simulator called CloudSim is used to conduct the necessary experiments, and results are presented to evidence the enhancement on replication performance. The obtained an
... Show MoreSolid waste is a major issue in today's world. Which can be a contributing factor to pollution and the spread of vector-borne diseases. Because of its complicated nonlinear processes, this problem is difficult to model and optimize using traditional methods. In this study, a mathematical model was developed to optimize the cost of solid waste recycling and management. In the optimization phase, the salp swarm algorithm (SSA) is utilized to determine the level of discarded solid waste and reclaimed solid waste. An optimization technique SSA is a new method of finding the ideal solution for a mathematical relationship based on leaders and followers. It takes a lot of random solutions, as well as their outward or inward fluctuations, t
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).