An antibacterial and antifungal piperonal-derived compound and its Rh(III), Pd(II), Pt(IV), and Cd(II) metal complexes were synthesized and characterized by spectroscopic methods, conductivity, metal analyses and magnetic moment measurements. The nature of the complexes formed in ethanolic solution was studied following the molar ratio method. From the spectral studies, octahedral geometry was suggested for rhodium (III) and platinum (IV) complexes, while a square planer structure was suggested for palladium (II) complex and a tetrahedral geometry for cadmium (II) complex. Structural geometries of these compounds were also suggested in gas phase by using hyperchem-8 program for the molecular mechanics and semi-empirical calculations. The heat of formation and binding energy for the prepared compounds was calculated by using PM3 and AMBER methods. The theoretically vibration spectra for the imine and its starting material was evaluated by using PM3 method. Preliminary in vitro tests for antibacterial and antifungal activity showed that most of the prepared compounds display a good activity to (Staphylococcus aureus), (Escherichia coli) and (Candida albicans).
This study reports the formation, characterisation and biological evaluation of a Schiff base ligand and its corresponding metal complexes. The Schiff base ligand (HL) was prepared through a condensation reaction involving isonicotinohydrazide and N'-((1R,2R,4R,5S, E)-2,4-bis(4-chlorophenyl)-3-azabi cyclo[3.3.1]nonan-9-ylidene) isonicotinohydrazide (M) in EtOH solvent and (3-5) drops of conc. HCl. The interaction of HL with selected metal chlorides including Mn(+2), Co(+2), Ni(+2), Cu(+2) and Zn(+2) in a 2:1 (L:M) mole ratio resulted in the synthesis of complexes with the general formula [M(HL)Cl2] (where: M = Mn(+2),Co(+2) and Ni(+2)) and [M`(HL)Cl2] (where M` = Cu(+2) and Zn(+2)). The characterisation of the prepared compounds w
... Show MoreThe purpose of this research is to synthesize a new mixed ligand Schiff base complexes of Co(II),Ni(II),Cu(II), Zn(II), Cd(II), and Hg(II),which are formulated from the Schiff base (L) that resulted from orthophathalaldehyde (2-PA) with 4-chloroaniline(4-NA). Diagnosis of prepared Ligand and its complexes is done by spectral methods as 1H–NMR, mass spectrometer, FTIR, UV-Vis, molar conductance, elemental microanalyses, atomic absoption and magnetic susceptibility. The analytical studyofall new complexes has shown octahedral geometries. Organic performance study of ligand Schiff base and its complexes reveals different activities agansit four types of bactria; two gram (+) and two gram (-) .
This study investigates the possibility of removing ciprofloxacin (CIP) using three types of adsorbent based on green-prepared iron nanoparticles (Fe.NPs), copper nanoparticles (Cu. NPS), and silver nanoparticles (Ag. NPS) from synthesized aqueous solution. They were characterized using different analysis methods. According to the characterization findings, each prepared NPs has the shape of a sphere and with ranges in sizes from of 85, 47, and 32 nanometers and a surface area of 2.1913, 1.6562, and 1.2387 m2/g for Fe.NPs, Cu.NPs and Ag.NPs, respectively. The effects of various parameters such as pH, initial CIP concentration, temperature, NPs dosage, and time on CIP removal were investigated through batch experiments. The res
... Show MoreThe reaction of poly (vinyl alcohol) (PV A) with Urea in (DMSO) resulted in uerthanised oxim, wr,ich reacted with diacetylmonoxime in a (DY.ISOfmethanol) to give anew type (N2) polymeric bidentate imine oxime ligand [HL], The ligand was reacted with MCh (where M= Co, Cu, and Hg). Under reflux in a (DMF/Methanol) mixture with (I:1) ratio to give Complexes of the general formula [M (T.)2]X, (where M= Co,Hg, Cu). All .:ompouncs have been characterized by spectroscopic methods [IR, U.V.-Vis, A tomi<;absorption] microanalysis along with conductivity measurements, from the above:: data the proposed molecular structure for Co,Cu, and Hg is a distorted. Tetrahedml
The new liganed Schiff base named [(E)-3-hydroxy-4-((3,4,5- trimethoxybenzylidene)amino) naphthalene-1- sulfonic acid] was synthesized from 3,4,5-trimethoxybenzyldehyde and 1-amino-2-aphthol-4- sulfonic acid in equal molar ratio. A series of new metal complexes' of the common molecular formulation [M(L)2(H2O)2].H2O are synthesized and characterized by IR, UV–Vis spectra, mass spectra, atomic absorption, elemental analyses, chloride content, magnetic susceptibility and conductivity measurements as well as thermo gravimetric analysis (TGA, DSC). Consistent with results of the magnetic and spectral studies, the advised geometrical structures for all of the prepared complexes have been octahedral formula
The cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the
... Show MoreThe current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.