The physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.
Pure cadmium oxide films (CdO) and doped with zinc were prepared at different atomic ratios using a pulsed laser deposition technique using an ND-YAG laser from the targets of the pressed powder capsules. X-ray diffraction measurements showed a cubic-shaped of CdO structure. Another phase appeared, especially in high percentages of zinc, corresponding to the hexagonal structure of zinc. The degree of crystallinity, as well as the crystal size, increased with the increase of the zinc ratio for the used targets. The atomic force microscopy measurements showed that increasing the dopant percentage leads to an increase in the size of the nanoparticles, the particle size distribution was irregular and wide, in addition, to increase the surfac
... Show MoreThe faujasite type Y zeolite catalyst was prepared from locally available kaolin. For prepared faujasite type NaY zeolite X-ray, FT-IR, BET pore volume and surface area, and silica/ alumina were determined. The Xray and FT-IR show the compatibility of prepared catalyst with the general structure of standard zeolite Y. BET test shows that the surface area and pore volume of prepared catalyst were 360 m2 /g and 0.39 cm3 /g respectively.
The prepared faujasite type NaY zeolite modified by exchanging sodium ion with ammonium ion using ammonium nitrate and then ammonium ion converted to hydrogen ion. The maximum sodium ion exchange with ammonium ion was 53.6%. The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites
Thin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin film
... Show MoreIn this research, a novel synthesis of CaONPs has been developed via an environmentally friendly, green method. Garlic extract (Allium sativum) was used as a green-reducing and stabilizing agent for CaONPs. The average particle size of CaONPs was approximately 24.42 nm. The synthesized CaONPs were identified by using Fourier transform infrared (FT-IR) spectroscopy, U.V.-vis spectrum, X-ray diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy, transmission electron microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX), Atomic Force Microscopy (AFM), and zeta potential (Zp) analysis. The current study highlights the notable applications for CaONPs. First, an antimicrobial assay revea
... Show MoreThe present work involved synthesis of serval new substituted tetrazole via Schiff bases for trimethoprim drug by two steps. The first step involved direct reaction of different ketones and aldehydes with trimethoprim producing the corresponding Schiff bases (1-10), whereas the second step, involved preparation new tetrazoles derivatives (11-20) through reaction of the ready Schiff bases (in the first step) with sodium azidein in dioxin. The prepared compounds were characterized by UV, FT-IR, and some of them by 13C-NMR, 1H-NMR spectroscopy and physical properties.
A crucial area of research in nanotechnology is the formation of environmentally benign nanoparticles. Both unicellular and multicellular play an important role in synthesis nanoparticles through the production of inorganic materials either intracellularly or extracellularly. The agents (pigments, siderophores, cell extracted metabolites and reducing compounds) were used to prepare silver nanparticles with different sizes and shapes. The color variations (dark yellow, slightly dark yellow and golden yellow) arising from changes in the composition, size, and shape of nanoparticles, surrounding medium can be monitored using UV-visible spectrophotometer. These effects are due to the phenomena called surface plasmon resonance. The silver nanopa
... Show MoreThe present work investigates the effect of; superficial air velocities of: 1, 3, and 6 cm/s for two types of perforated distributor on hydrodynamic characteristic in a gas-liquid dispersion column of; air-water, and airaqueous-n-propanol solution. Bubble distribution, gas holdup, and power consumption are parameters take in consideration. Experimental work was carried out in perspex column of 8.5 cm inside diameter and 1.5 m height. Two types of bubble generator (perforated plate) were fixed at the bottom of the column; plate A (99 holes of 0.5 mm diameter and free area of 0.34%), plate B (20 holes of 1.5 mm diameter and free area of 0.62%). Photographic technique was used to measure the bubble parameters. The experimental results were
... Show MoreThis study introduces a highly sensitive trapezium-shaped PCF based on an SPR refractometric sensor with unique design features. The structure of a sensor was designed and analyzed using COMSOL Multiphysics v5.6 based on Finite Element Method (FEM) with a focus on investigating the influence of various geometric parameters on its performance. The two channels were coated with a metallic gold layer to provide chemical stability, and a thin layer of TiO₂ improved the gold's adhesion to the fiber. The findings indicate that the proposed sensor achieves maximum amplitude and wavelength sensitivities of 1,779 RIU⁻¹ and 30,500 nm/RIU, respectively, with corresponding resolutions of 3.2
Abstract: Reflection optical fibre Humidity sensor is presented in this work, which is based on no core fibre prepared by splicing a segment of no core fibre (NCF) at different lengths 1-6 cm with fixed diameter 125 µm and a single mode fibre (SMF). The range of humidity inside the chamber is controlled from 30% to 90% RH at temperature ~ 30 °С. The experimental result shows that the resonant wavelength dip shift decreases linearly with an increment of RH% and the sensitivity of the sensor increased linearly with an increasing in the length of NCF. However, a high sensitivity 716.07pm/RH% is obtained at length 5cm with good stability and reputability. Furthermore, the sensor is shif
... Show MoreTwo compounds,[2-amino-4-(4-nitro phenyl) 1,3-thiazole],(4) and [2-amino-4-(4-bromo phenyl) 1,3-thiazole],(5), were synthesized by refluxing thiourea (1) with each of para-ntiro and para-bomophanacyl bromides(2) and (3) respectively, in absolute methanol. Then, by reaction of [5] with 3,5-dinitrobenzoyl chloride in dimethylformamide (DMF) yielded (6) .On the other hand, reaction of (4) with chloroacetyl chloride in dry benzene afforded (7), which is upon treatment with thiourea in absolute methanol, af
... Show More