In this research, the degradation of Dazomet has been studied by using thermal Fenton process and photo-Fenton processes under UV and lights sun. The optimum values of amounts of the Fenton reagents have been determined (0.07g FeSO4 .7H2O, 3.5µl H2O2) at 25 °C and at pH 7 where the degradation percentages of Dazomet were recorded high. It has been found that solar photo Fenton process was more effective in degradation of Dazomet than photo-Fenton under UV-light and thermal Fenton processes, the percentage of degradation of Dazomet by photo-Fenton under sun light are 88% and 100% at 249 nm and 281 nm respectively, while the percentages of degradation for photo-Fenton under UV-light are 87%, 96% and for thermal Fenton are 70% and 66.8% at 249 nm and 281 nm respectively. In this research the effect of temperature on all the reactions has been studied in the range 25°C-45°C, it has been noticed that the reaction rate constant (k) has increased with increasing temperature, and the best percentage degradation of Dazomet was at 45°C in all processes, so, the thermodynamic functions ?G*, ?H*, ?S* have been calculated
The refractive indices, nD densities 𝜌, and viscosities of binary mixtures of sulfolane + n -butanol + sec- butanol + iso- butanol + tert – butanol + n-propanol and iso- propanol were measured at 298.15K. Form experimental data, excess molar volum VE , excess molar refractivity ∆nD, excess molar viscosity E and excess molar Gibbs free energy of activation of viscous flow G *E were calculated. From n-propanol – sulfolane and iso- propanol sulfolane mixtures showed negative ∆nD, n-butanol – sulfolane, sec-butanal – sulfolane, iso-butanol – sulfolane and tert- butanol sulfolane , nD was positive over the whole mole fraction rang , while VE , E and G *E show a negative deviation. The
... Show MoreNew ligands, N1, N4-bis (benzo[d]thiazol-2- ylcarbamothioyl) succinamide (L1) and N1, N4- bis (benzylcarbamothioyl)succinamide (L2), derived from succinyl chloride and 2-amino benzothiazole or benzylamine, respectively, have been used to prepare a set of transition metal complexes with the general formula [M2(L)Cl4], where L=L1 or L2, M = Mn(II), Ni(II), Cu(II), Cd(II), Co(II), Zn(II) or Hg(II). The synthesized compounds were characterized using various analytical techniques including TGA, 13C NMR, mass spectroscopy, 1H and Fourier-transform infrared (FTIR) spectroscopy, magnetic measurement, molar conductivity, electronic spectrum, (%M, %C, %H, %N) and atomic absorption flame (AAF) analysis. The results showed that (L1, L2) bin
... Show MoreThis study focused on the synthesis of novel polymers incorporating the 1,3,4-oxadiazole ring. Four polymers were specifically prepared by blending polymers (6-9) with polyvinyl alcohol (PVA) in defined ratios, resulting in the formation of blended polymers (10-13). The synthesized polymers were characterized using Fourier Transform Infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (1H-NMR). The results showed that the structure aligned with the proposed synthetic polymers. Furthermore, the physical and thermal properties were studied using scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). Additionally, the biological activity was examined against two s
... Show MoreThis study focused on the synthesis of novel polymers incorporating the 1,3,4-oxadiazole ring. Four polymers were specifically prepared by blending polymers (6-9) with polyvinyl alcohol (PVA) in defined ratios, resulting in the formation of blended polymers (10-13). The synthesized polymers were characterized using Fourier Transform Infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (1H-NMR). The results showed that the structure aligned with the proposed synthetic polymers. Furthermore, the physical and thermal properties were studied using scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). Additionally, the biological activity was examined against two s
... Show MoreThe one-dimensional, spherical coordinate, non-linear partial differential equation of transient heat conduction through a hollow spherical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal con
... Show MoreThe one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant the