One of the concerns of adopting an e-voting systems in the pooling place of any critical elections is the possibility of compromising the voting machine by a malicious piece of code, which could change the votes cast systematically. To address this issue, different techniques have been proposed such as the use of vote verification techniques and the anonymous ballot techniques, e.g., Code Voting. Verifiability may help to detect such attack, while the Code Voting assists to reduce the possibility of attack occurrence. In this paper, a new code voting technique is proposed, implemented and tested, with the aid of an open source voting. The anonymous ballot improved accordingly the paper audit trail used in this machine. The developed system, which we called CVOTING, further demonstrated the efficacy of the Code Voting technique against systematic vote change attacks and provides some features to make it easily configurable for different elections and elections in countries with right-to-left and up-to-down languages.
This study aims to preparation a standards code for sustainability requirements to contribute in a better understanding to the concept of sustainability assessment systems in the dimensions of Iraqi projects in general and in the high-rise building. Iraq is one of the developing countries that faced significant challenges in sustainability aspects environmental, economic and social, it became necessary to develop an effective sustainability building assessment system in respect of the local context in Iraq. This study presented a proposal for a system of assessing the sustainability requirements of Iraqi high rise buildings (ISHTAR), which has been developed through several integrated
In this paper the queuing system (M/Er/1/N) has been considered in equilibrium. The method of stages introduced by Erlang has been used. The system of equations which governs the equilibrium probabilities of various stages has been given. For general N the probability of j stages of service are left in the system, has been introduced. And the probability for the empty system has been calculated in the explicit form.
Abstract
For sparse system identification,recent suggested algorithms are
-norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
In this research the performance of 5G mobile system is evaluated through the Ergodic capacity metric. Today, in any wireless communication system, many parameters have a significant role on system performance. Three main parameters are of concern here; the source power, number of antennas, and transmitter-receiver distance. User equipment’s (UEs) with equal and non-equal powers are used to evaluate the system performance in addition to using different antenna techniques to demonstrate the differences between SISO, MIMO, and massive MIMO. Using two mobile stations (MS) with different distances from the base station (BS), resulted in showing how using massive MIMO system will improve the performance than the standar
... Show MoreThis paper presents an approach to license plate localization and recognition. A proposed method is designed to control the opening of door gate based on the recognition of the license plates number in Iraq. In general the system consists of four stages; Image capturing, License plate cropping, character segmentation and character recognition. In the first stage, the vehicle photo is taken from standard camera placed on the door gate with a specific distance from the front of vehicle to be processed by our system. Then, the detection method searches for the matching of the license plate in the image with a standard plate. The segmentation stage is performed by is using edge detection. Then character recognition, done by comparing with templ
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show More