In this paper, we deal with games of fuzzy payoffs problem while there is uncertainty in data. We use the trapezoidal membership function to transform the data into fuzzy numbers and utilize the three different ranking function algorithms. Then we compare between these three ranking algorithms by using trapezoidal fuzzy numbers for the decision maker to get the best gains
Reliability is an essential measure and important component of all power system planning and operation procedures. It is one of the key design factors when designing complex, critical and expensive systems. This paper presents a fuzzy logic approach for reliability improvement planning purposes. Evaluating the reliability of the complex and large planned Iraqi super grid ;as Al- Khairat generating station with its tie set is intended to be compact to that grid; and determination of the given reliability improvement project are the major goals of the paper. Results show that the Iraqi super grid reliability is improved by 9.64%. In the proposed technique, fuzzy set theory is used to include imprecise indices of different components in normal
... Show MoreAbstract:
One of the important things provided by fuzzy model is to identify the membership functions. In the fuzzy reliability applications with failure functions of the kind who cares that deals with positive variables .There are many types of membership functions studied by many researchers, including triangular membership function, trapezoidal membership function and bell-shaped membership function. In I research we used beta function. Based on this paper study classical method to obtain estimation fuzzy reliability function for both series and parallel systems.
The concept of Cech fuzzy soft bi-closure space ( ˇ Cfs bi-csp) ( ˇ U, L1, L2, S) is initiated and studied by the authors in [6]. The notion of pairwise fuzzy soft separated sets in Cfs bi-csp is defined in this study, and various features of ˇ this notion are proved. Then, we introduce and investigate the concept of connectedness in both Cfs bi-csps and its ˇ associated fuzzy soft bitopological spaces utilizing the concept of pairwise fuzzy soft separated sets. Furthermore, the concept of pairwise feebly connected is introduced, and the relationship between pairwise connected and pairwise feebly connected is discussed. Finally, we provide various instances to further explain our findings.
Measurement of construction performance is essential to a clear image of the present situation. This monitoring by the management team is necessary to identify locations where performance is exceptionally excellent or poor and to identify the primary reasons so that the lessons gained may be exported to the firm and its progress strengthened. This research attempts to construct an integrated mathematical model utilizing one of the recent methodologies for dealing with the fuzzy representation of experts’ knowledge and judgment considering hesitancy called spherical fuzzy analytic hierarchy process (SFAHP) method to assess the contractor’s performance per the project performance pa
In this paper, the Active Suspension System (ASS) of road vehicles was investigated. In addition to the conventional stiffness and damper, the proposed ASS includes a fuzzy controller, a hydraulic actuator, and an LVDT position sensor. Furthermore, this paper presents a nonlinear model describing the operation of the hydraulic actuator as a part of the suspension system. Additionally, the detailed steps of the fuzzy controller design for such a system are introduced. A MATLAB/Simulink model was constructed to study the proposed ASS at different profiles of road irregularities. The results have shown that the proposed ASS has superior performance compared to the conventional Passive Suspension System (PSS), where the body displacemen
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreStatistical methods and statistical decisions making were used to arrange and analyze the primary data to get norms which are used with Geographic Information Systems (GIS) and spatial analysis programs to identify the animals production and poultry units in strategic nutrition channels, also the priorities of food insecurity through the local production and import when there is no capacity for production. The poultry production is one of the most important commodities that satisfy human body protein requirements, also the most important criteria to measure the development and prosperity of nations. The poultry fields of Babylon Governorate are located in Abi Ghareg and Al_Kifil centers according to many criteria or factors such as the popu
... Show MoreIn this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.