Ankylosing spondylitis is a complex debilitating disease because its pathogenesis is not clear. This study aims at detecting some pathogenesis factors that lead to induce the disease. Chlamydia pneumoniae is one of these pathogenesis factors which acts as a triggering factor for the disease. The study groups included forty Iraqi Ankylosing spondylitis patients and forty healthy persons as a control group. Immunological and molecular examinations were done to detect Chlamydia. pneumoniae in AS group. The immunological results were performed by Enzyme-Linked Immunosorbent Assay (ELISA) to detect anti-IgG and anti-IgM antibodies of C. pneumoniae revealed that five of forty AS patients' samples (12.5%) were positive for anti-IgG and IgM C. pneumoniae antibodies compared to controls which revealed seronegative. Molecular detection included 16srRNA and HSP-70 genes were to ensure the serological examination for detection of bacteria in the five blood samples which were positive; therefore, these results improved that C. pneumoniae played a role in the pathogenesis of the disease
One of the most Interesting natural phenomena is clouds that have a very strong effect on the climate, weather and the earth's energy balance. Also clouds consider the key regulator for the average temperature of the plant. In this research monitoring and studying the cloud cover to know the clouds types and whether they are rainy or not rainy using visible and infrared satellite images. In order to interpret and know the types of the clouds visually without using any techniques, by comparing between the brightness and the shape of clouds in the same area for both the visible and infrared satellite images, where the differences in the contrasts of visible image are the albedo differences, while in the infrared images is the temperature d
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreEchocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreLymphoma is a cancer arising from B or T lymphocytes that are central immune system components. It is one of the three most common cancers encountered in the canine; lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic conditions and to improve decision-making around treating and what treatment type to use. This study aimed to evaluate a potential novel biomarker related to iron metabolism,
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
The present study aimed at shed light on the association between HLA-class I antigens (A, B and Cw) and brain tumours (meningioma and glioma) in the basis of their individual frequencies or two-locus association A total of 52 brain tumour patients were enrolled in this study, with an age range of 7-68 years. The patients were divided into two clinical groups; meningioma (20 cases) and glioma (22 cases), while the remaining 10 cases represented other types of brain tumour. Control samples included 47 Iraqi Arab apparently healthy blood volunteers, with an age range of 15-50 year. Three HLA antigens showed a significant increased frequency in total patients as compared to controls. They were B13 (34.6 vs. 6.5%), B40 (15.4 vs. 2.2%) and Cw3
... Show MoreBackground: Oxidative stress may contribute to the etiology of hypertension in humans. Oxidative stress is an imbalance between reactive oxygen species (ROS) and antioxidant defense mechanisms, causing damage to biological macromolecules and dysregulation of normal metabolism and physiology. Amlodipine as an antihypertensive agent is a long-acting calcium channel blocker that dilates blood vessels and improves blood flow. The aim of this study was to assess the oxidative stress in hypertensive patients on Amlodipine treatment through the assessment of salivary Malondialdehyde (MDA) and superoxide dismutase (SOD) as a marker of oxidative stress.
Mat
... Show MoreThe objective of this study is to evaluate the effect of aspirin, clopidogrel or their combination on different parameters in hypertensive patients.Platelets adhesion, activation, and aggregation are central to thrombus formation, which follows atherosclerotic plaque disruption and causes acute coronary syndromes. Aspirin and clopidogrel exert their antiplatelet effects by inhibiting thromboxane A2 production and adenosine diphosphate–induced platelet aggregation pathways, respectively. This study was designed to evaluate the possible effects of aspirin and clopidogrel given either alone or in combination in patients with essential hypertension on blood pressure and other parameters in addition to lipid profile using a randomized
... Show MoreKE Sharquie, SA Al-Mashhadani, AA Noaimi, MY Abbas, Journal of the Saudi Society of Dermatology & Dermatologic Surgery, 2011 - Cited by 5