In this work, lead oxide nanoparticles were prepared by laser ablation of lead target immersed in deionized water by using pulsed Nd:YAG laser with laser energy 400 mJ/pulse and different laser pulses. The chemical bonding of lead oxide nps was investigated by Fourier Transform Infrared (FTIR); surface morphology and optical properties were investigated by Scanning Electron Microscope (SEM) and UV-Visible spectroscopy respectively, and the size effect of lead oxide nanoparticles was studied on its antibacterial action against two types of bacteria Gram-negitive (Escherichia coli) and Gram-positive (Staphylococcusaurus) by diffusion method. The antibacterial property results show that the antibacterial activity of the Lead oxide NPs was inversely proportional to the size of the nanoparticles in both Gram-negative and Gram-positive, and also it has been found that Gram-positive bacteria possess have greater sensitivity and less resistance to the lead oxide nanoparticles compared with Gram-negative bacteria.
Nowadays nanoparticles are used in many fields of life all over the world, and there are numerous ways to obtain them: chemical, physical and biological processes. In recent times, the biological method for the synthesis of nanoparticles associated with using plant extract is widely spread. Optimal conditions for synthesis of silver nanoparticles using aqueous seeds extract of Myristica fragrance were highlighted in this research, such as type of plant extract, weight of extracted plant material, volume ratio of plant extract to AgNO3 and temperature of reaction. The study proved that the optimal status for AgNPs synthesis by using 10 g of M. fragrance seeds powder were added to 100 mL boiled distilled water, then homogenized and f
... Show MoreNowadays nanoparticles are used in many fields of life all over the world, and there are numerous ways to obtain them: chemical, physical and biological processes. In recent times, the biological method for the synthesis of nanoparticles associated with using plant extract is widely spread. Optimal conditions for synthesis of silver nanoparticles using aqueous seeds extract of Myristica fragrance were highlighted in this research, such as type of plant extract, weight of extracted plant material, volume ratio of plant extract to AgNO3 and temperature of reaction. The study proved that the optimal status for AgNPs synthesis by using 10 g of M. fragrance seeds powder were added to 100 mL boiled distilled water, then homogenized and filt
... Show MoreObjectives This work presents laser coating of grade 1 pure titanium (Ti) dental implant surface with sintered biological apatite beta-tricalcium phosphate (β-TCP), which has a chemical composition close to bone. Materials and methods Pulsed Nd:YAG laser of single pulse capability up to 70 J/10 ms and pulse peak power of 8 kW was used to implement the task. Laser pulse peak power, pulse duration, repetition rate and scanning speed were modulated to achieve the most homogenous, cohesive and highly adherent coat layer. Scanning electron microscopy (SEM), energy dispersive X-ray microscopy (EDX), optical microscopy and nanoindentation analyses were conducted to characterise and evaluate the microstructure, phases, modulus of elasticity
... Show MorePreparation and Characterization of Maleate, Tartarate,and Phthalate Modified Pectin
This investigation was carried out to study the treatment and recycling of wastewater in the Battery industry for an effluent containing lead ion. The reuse of such effluent can only be made possible by appropriate treatment method such as electro coagulation.
The electrochemical process, which uses a cell comprised aluminum electrode as anode and stainless steel electrode as cathode was applied to simulated wastewater containing lead ion in concentration 30 – 120 mg/l, at different operational conditions such as current density 0.4-1.2 mA/cm2, pH 6 -10 , and time 10 - 180 minute.
The results showed that the best operating conditions for complete lead removal (100%) at maximum concentration 120 mg/l was found to be 1.2 mA/cm2 cur
Nanoparticles are a special group of materials with unique features and extensive applications in diverse fields. The use of nanoparticles of some metals is a viable solution to stop infectious diseases due to the antimicrobial properties of these nanoparticles. The present work demonstrates the effect of silver nanoparticles (AgNPs) on the antibacterial activity of four different antibiotics (amoxicillin, ceftriaxone, chloramphenicol, and penicillin) against eleven Gram-positive and Gram-negative isolates. Disk diffusion method was used to determine the antibacterial activity of various classes of antibiotics in the absence and presence of sub-inhibitory silver nanoparticles of concentration (80 microgram/ml). A synergistic effect was o
... Show MoreIn this work, the antibacterial effectiveness of face masks made from polypropylene, against Candida albicans and Pseudomonas aeruginosa pathogenic was improved by soaking in gold nanoparticles suspension prepared by a one-step precipitation method. The fabricated nanoparticles at different concentrations were characterized by UV-visible absorption and showed a broad surface Plasmon band at around 520 nm. The FE-SEM images showed the polypropylene fibres highly attached with the spherical AuNPs of diameters around 25 nm over the surfaces of the soaked fibres. The Fourier Transform Infrared Spectroscopy (FTIR) of pure and treated face masks in AuNPs conform to the characteristics bands for the polypropylene bands. There are some differences
... Show More