There is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that it operates on a big number of key-points, the only drawback it has is that it is rather time consuming. In the suggested approach, the system deploys SIFT to perform its basic tasks of matching and description is focused on minimizing the number of key-points which is performed via applying Fast Approximate Nearest Neighbor algorithm, which will reduce the redundancy of matching leading to speeding up the process. The proposed application has been evaluated in terms of two criteria which are time and accuracy, and has accomplished a percentage of accuracy of up to 100%, in addition to speeding up the processes of matching and description.
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThis study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreThe aim of the research was to prepare the fields and items for safe environment scale form professional basketball players and coaches’ point of view. The researchers used the descriptive method on professional athletes of players and coaches from (11) clubs; for the pilot study (21) athletes were selected and for the building sample (103) athletes, and standardization sample (101) athletes from the participants in the Iraqi league (2018-2019). The scale of the safe environment was concluded with (6) fields and (52) items. The researchers came up with the safe environment scale from the point of view of professional basketball players and coaches. Finally the researchers recommended paying attention to providing safe environment for athl
... Show MoreThe current research aimed to investigate the psychometric characteristics of the Arabic version of the Nomophobia scale for the Omani youth. The scale was administered to a random sample of students from public and private universities and colleges in Oman. The research sample consisted of 2507 students, of whom 868 males and 1639 females. The validity of the measure was first checked by presenting the scale to a group of experts in this field. Then the exploratory and confirmatory factor analysis was carried out. The exploratory factor analysis revealed the existence of three main factors: the fear of connectivity loss, the fear of communication loss with others, and the fear of network outages. These factors accounted for 65.6% of the
... Show MoreABSTRACT Planetary Nebulae (PN) distances represent the fundamental parameter for the determination the physical properties of the central star of PN. In this paper the distances scale to Planetary Nebulae in the Galactic bulge were calculated re- lated to previous distances scales. The proposed distance scale was done by recalibrated the previous distance scale technique CKS/D82. This scale limited for nearby PN (D ≤ 3.5 kpc), so the surface fluxes less than other distance scales. With these criteria the results showed that the proposed distance scale is more accurate than other scales related to the observations for adopted sample of PN distances, also the limit of ionized radius (Rio) for all both optically thick and optically thin in
... Show MoreFuture wireless systems aim to provide higher transmission data rates, improved spectral efficiency and greater capacity. In this paper a spectral efficient two dimensional (2-D) parallel code division multiple access (CDMA) system is proposed for generating and transmitting (2-D CDMA) symbols through 2-D Inter-Symbol Interference (ISI) channel to increase the transmission speed. The 3D-Hadamard matrix is used to generate the 2-D spreading codes required to spread the two-dimensional data for each user row wise and column wise. The quadrature amplitude modulation (QAM) is used as a data mapping technique due to the increased spectral efficiency offered. The new structure simulated using MATLAB and a comparison of performance for ser
... Show More