The protozoan parasite Entamoeba histolytica is a causative agent of amoebiasis, where it causes millions of cases of dysentery and liver abscess each year. Metronidazole is a drug of choice against amoebiasis. The drug is a choice because of its efficacy and low cost, but at the same time it causes several adverse side effects; therefore, it is important to find effective medications to treat amoebiasis without any complications or any side effects. The aim of this study is to evaluate the effectiveness of different concentrations (50, 75 and 100 µg/ml) of silver nanoparticle (AgNPs) against trophozoites stages of E. histolytica in vitro. The results showed a significant decrease (p ? 0.05) in numbers of trophozoites stages after treated with AgNPs and metronidazole when it was compared with the control. Likewise, a significant difference (p ? 0.05) was also observed between AgNPs groups and metronidazole drug, while it did not significantly differ between different concentrations of AgNPs. The mortality rate values of the E. histolytica trophozoites after 48h incubation with AgNPs at a concentration of 50, 75 and 100 ?g/ml, and metronidazole were 37.2%, 42.4%, 46.7% and 100%, respectively. The microscopic studies confirmed that AgNPs were effective enough to induce apoptosis. Based on our results, the anti-parasitic activity of AgNPs at different concentrations will reduce the mean number of E. histolytica trophozoites.
The Effect of Chicken Eggshell Extract on Microhardness of Artificially Induced Dental Erosion in Permanent Teeth (In Vitro Study), Shatha A Abbas*, Alhan A Qasim
Background: Dental caries is one of the most significant problems in world health care. Restoring carious primary teeth is one of the major treatment goals for Children, and the light activated resin restoration materials like composite, resin-modified glass ionomer and polyacid-modified which was introduced in dentistry in 1970, widely used in clinical dentistry but its application increased dramatically in recent years because of its biocompatibility, color matching, good adhesive properties of its resemblance in physical and mechanical aspects to tooth. The aim of this study: To evaluate the microleakage of Polyacid-Modified Composite resin Compared to Flowable Hybrid Composite and Resin-Modified Glass ionomer cement. Materials and me
... Show MoreBackground: This study aimed to apply a high-power pulsed alexandrite laser in vitro, the researchers tested different exposure periods, pulse lengths, and laser fluencies to see which dosage was most successful against S. aureus bacteria, which had developed resistance to many antibiotics. Method: Three bacteria samples were exposed to laser beams for 30 seconds with a 5ms pulse duration and a laser fluency of 5J/cm2. The process was repeated with laser fluencies of 10, 15, and 20. Results: The study was carried out by using different doses of Alexandrite laser. Results: There are significant differences (p = 0.05) in the mean number of bacteria colonies exposed for 30 and 60 seconds at any laser fluencies utilized in the present i
... Show MoreIn this work, the study of
Background: Restoration of root canal treated teeth with a permanent restoration affect in the success of endodontically treated teeth. This in vitro study was performed to evaluate and compare the fracture strength of endodontically treated teeth restored by using custom made zirconium posts and cores, prefabricated carbon fiber, glass fiber and zirconium ceramic posts. Materials and method: Forty intact human mandibular second premolars were collected for this study and were divided into five groups. Each group contains 8 specimens: Group1: Teeth restored with Carbon Fiber Posts; Group2: Teeth restored with Glass Fiber Posts; Group3: Teeth restored with Zirconium Ceramic prefabricated Posts; Group4: Teeth restored with Zirconium Posts
... Show MoreIn this study, a packed bed was used to remove pathogenic bacteria from synthetic contaminated water. Two types of packing material substrates, sand and zeolite, were used. These substrates were coated with silver nanoparticles (AgNPs), which were prepared by decomposition of Ag ions from AgNO3 solution. The prepared coated packings were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The packed column consisted of a PVC cylinder of 2 cm diameter and 20 cm in length. The column was packed with silver nanoparticlecoated substrates (sand or zeolite) at a depth of 10 cm. Four types of bacteria were studied: Escherichia coli, Shigella dysenteriae, Pseudomonas aerugi
... Show More