To improve the efficiency of a processor in recent multiprocessor systems to deal with data, cache memories are used to access data instead of main memory which reduces the latency of delay time. In such systems, when installing different caches in different processors in shared memory architecture, the difficulties appear when there is a need to maintain consistency between the cache memories of different processors. So, cache coherency protocol is very important in such kinds of system. MSI, MESI, MOSI, MOESI, etc. are the famous protocols to solve cache coherency problem. We have proposed in this research integrating two states of MESI's cache coherence protocol which are Exclusive and Modified, which responds to a request from reading and writing at the same time and that are exclusive to these requests. Also back to the main memory from one of the other processor that has a modified state is removed in using a proposed protocol when it is invalidated as a result of writing to that location that has the same address because in all cases it depends on the latest value written and if back to memory is used to protect data from loss; preprocessing steps to IES protocol is used to maintain and saving data in main memory when it evict from the cache. All of this leads to increased processor efficiency by reducing access to main memory
Objective: the aim of this study is to invest age and determine the effect of using (2) packing
technique (conventional and new tension technique) on hardness of (2) types of heat cure acrylic
resin which are (Ivoclar and Qual dental type).
Methodology : this study was intended the using of two types of heat cure acrylic (IVoclar and
Qual dental type) which are used in construction of complete denture which packed in two different
packing technique (conventional and new tension technique) and accomplished by using a total of
(40) specimens in diameter of ( 2mm thickness, 2 cm length and 1 cm width) . This specimens were
sectioned and subdivide into (4) group each (10) specimens for one group , then signed as (A, Al B
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
Variable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage
... Show MoreThis paper describes a research effort that aims of developing solar models for housing suitable for the Arabian region since the Arabian Peninsula is excelled with very high levels of solar radiation.
The current paper is focused on achieving energy efficiency through utilizing solar energy and conserving energy. This task can be accomplished by implementation the major elements related to energy efficiency in housing design , such as embark on an optimum photovoltaic system orientation to maximize seize solar energy and produce solar electricity. All the precautions were taken to minimizing the consumption of solar energy for providing the suitable air-condition to the inhibitor of the solar house in addition to use of energy effici
Database is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r
... Show MoreMolecular barcoding was widely recognized as a powerful tool for the identification of organisms during the past decade; the aim of this study is to use the molecular approach to identify the diatoms by using the environmental DNA. The diatom specimens were taken from Tigris River. The environmental DNA(e DNA) extraction and analysis of sequences using the Next Generation Sequencing (NGS) method showed the highest percentage of epipelic diatom genera including Achnanthidium minutissimum (Kützing) Czarnecki, 1994 (21.1%), Cocconeis placentula Ehrenberg, 1838 (21.3%) and Nitzschia palea (Kützing) W. Smith, 1856 (16.3%).
Five species of diatoms: Achnanthidiu
... Show More