This study was conducted to determine the fungal cause and bio control of damping off and root rot of wheat plants by using pseudomonas fluorescens under greenhouse and field conditions. Results showed isolation of eight species from the soil and roots to deferent region of Baghdad government. Rhizoctonia solani (Rs) and Fusarium solani (Fs) were the predominant damping off fungus with frequency 60 and 52% respectively. Led the using of bacteria formulations such as crud suspension , pure bacteria filtration and pure living cells in culture medium inhibit all type fungi with rates ranging from 84-96% , 80- 93% and 75-88% respectively. Rs and Fs were more pathogenesis under greenhouse conditions, with incidence of 80 and 68% and disease severity up to 41,20 and 30,20% respectively. The results of test bacterial formulation (dry, liquid and bacterial filtrate ) with seeds, soil and water irrigation showed high effectiveness for all treatments with superiority of the treatment of seeds in reducing the incidence which reached for the three formulation 21-34% compared with the infested control of Fs, Rs which reached 70 and 55%, respectively. Field experiments results showed superiority of seeds bacterization with dry formulation to reduce the disease incidence to 38% compared with the infested control (75%).These results reflected on the increasing of the shoot and rot dry weight and increasing the productivity (63%) compared with the infested control treatment .
The goal of this work is to check the presence of PNS (photon number splitting) attack in quantum cryptography system based on BB84 protocol, and to get a maximum secure key length as possible. This was achieved by randomly interleaving decoy states with mean photon numbers of 5.38, 1.588 and 0.48 between the signal states with mean photon numbers of 2.69, 0.794 and 0.24. The average length for a secure key obtained from our system discarding the cases with Eavesdropping was equal to 125 with 20 % decoy states and 82 with 50% decoy states for mean photon number of 0.794 for signal states and 1.588 for decoy states.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreMammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreConcentrations 25, 50 and 100 mg of nano-capsules linolenic acid and non-capsulated fatty acid for 1kg of Milk was used for yogurt manufacture. The results showed no significant differences in the ratio of titration acidity and pH values between all processed treatments at the beginning and during of period storage. The treatments was added to it coated omega-3 by nano method were the least exposed to the oxidation process from the non-capsules omega-3, And for shield of The poly lactic acid had a significant role in the protection of alpha-linolenic acid against lipolysis by the formation of a protective layer to protect the acid from the activity of lipases enzymes, and the addition of fatty acid linolenic to milk was determined the gr
... Show MoreBackground Cardiovascular disease (CVD) is a leading cause of death worldwide. Ischemic heart disease is a major cause of morbidity and mortality. Lack of blood supply to the brain can cause tissue death if any of the cerebral veins, carotid arteries, or vertebral arteries are blocked. An ischemic stroke describes this type of event. One of the byproducts of methionine metabolism, the demethylation of methionine, is homocysteine, an amino acid that contains sulfur. During myocardial ischemia, the plasma level of homocysteine (Hcy) increases and plays a role in many methylation processes. Hyperhomocysteinemia has only recently been recognized as a major contributor to the increased risk of cardiovascular disease (CVD) owing to its eff
... Show MoreZM Al-Bahrani, Medico Legal Update, 2021