A rapid, simple and sensitive spectrophotometric method for the determination of trace amounts of chromium is studied. The method is based on the interaction of chromium with indigo carmine dye in acidic medium and the presence of oxalates as a catalyst for interaction, and after studying the absorption spectrum of the solution resulting observed decrease in the intensity of the absorption. As happened (Bleaching) for color dye, this palace and directly proportional to the chromium (VI) amount was measured intensity of the absorption versus solution was figurehead at a wavelength of 610 nm. A plot of absorbance with chromium (VI) concentration gives a straight line indicating that Beer’s law has been obeyed over the range of 0.5 -70 µg /25 ml, i.e., 0.02- 2.8 ppm with a molar absorptivity of chromium (VI) 1.71? 104 l.mol-1.cm-1, Sandell’s sensitivity index of 0.0030 µg.cm-2 .The detection limit of chromium was (DL) 0.0012 µg.mL-1 and a relative standard deviation of ? (0.70 -1.86)% depended on the concentration level. The method is developed for the determination of chromium(III) and has been successfully applied to the determination of chromium in various water samples, Pharmaceutical preparations ,standard rock sample of (MRG-1).
Concentrations of radon were measured in this study for twenty-four samples of soil distributed in six locations on the north part of Iraq. The radon concentrations in soil samples measured by using alpha-emitters registration that emits from Radon (222Rn) in (CR-39) track detector. The concentrations values were calculated by a comparison with standard samples. The results shows that the radon gas concentrations in Darbandikhan City varies from (16.60-34.04 Bq/m3), Halabja City (16.51-23.32 Bq/m3), Al Sulaimaniya City (17.61-32.25 Bq/m3), Koisnjaq City (22.04-35.65 Bq/m3), Shaqlaua City (21.10-29.10 Bq/m3) and Erbil City (22.30-34.63 Bq/m3). The average radon gas concentration in Al Sulaimaniya and Erbil governorate are (22.30 Bq/m3)
... Show MoreThe two most popular models inwell-known count regression models are Poisson and negative binomial regression models. Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. Negative binomial regression is similar to regular multiple regression except that the dependent (Y) variables an observed count that follows the negative binomial distribution. This research studies some factors affecting divorce using Poisson and negative binomial regression models. The factors are unemplo
... Show MoreThis research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hai
... Show MoreDrug consultation is an important part of pharmaceutical care. mobile phone call or text message can serve as an easy, effective, and implementable alternative to improving medication adherence and clinical outcomes by providing the information needed significantly for people with chronic illnesses like diabetes and hypertension particularly during pandemics like COVID-19 pandemic.
This study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to
The construction industry plays a crucial role in the countries' economy, especially in the developed country. This point encourages the concerned institution to use new techniques and integrate many techniques and methods to maximize the benefits. The main objective of this research is to evaluate the use of risk management, value management, and building information modeling in the Iraqi construction industry. The evaluation process aims at two objectives. The direct objective was to evaluate the knowledge in risk management (RM), value management (VM), and building information modeling (BIM). The indirect objective was to support the participants with information related to the main items mentioned. The questionnaire
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreShadow detection and removal is an important task when dealing with color outdoor images. Shadows are generated by a local and relative absence of light. Shadows are, first of all, a local decrease in the amount of light that reaches a surface. Secondly, they are a local change in the amount of light rejected by a surface toward the observer. Most shadow detection and segmentation methods are based on image analysis. However, some factors will affect the detection result due to the complexity of the circumstances. In this paper a method of segmentation test present to detect shadows from an image and a function concept is used to remove the shadow from an image.