Iron oxide(Fe3O4) nanoparticles of different sizes and shapes were synthesized by solve-hydrothermal reaction assisted by microwave irradiation using ferrous ammonium sulfate as a metal precursor, oleic acid as dispersing agent, ethanol as reducing agent and NaOH as precipitating agent at pH=12. The synthesized Fe3O4 nano particles were characterized by X-ray diffraction (XRD), FTIR and thermal analysis TG-DTG. Sizes and shapes of Fe3O4 nanoparticles were characterized by Scanning Electron Microscopy (SEM), and atomic force microscopy (AFM).
The present research included synthesis of silver nanoparticle from(1*10-3,1*10-4 and1*10-5) M aqueous AgNO3 solution through the extract of M.parviflora reducing agent. In the process of synthesizing silver nanoparticles we detected a rapid reduction of silver ions leading to the formation of stable crystalline silver nanoparticles in the solution.
Reservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and
... Show MorePolyaniline films were successfully synthesized in this study using an oxidative polymerization method at temperatures ranging from 0 to 4 ° C. Polyaniline films were deposited using a single step of chemical oxidative polymerization rather than electrochemical polymerization. The polyaniline was examined using FTIR, XRD, SEM, AFM, and Four Point Probe. This result demonstrates that polyaniline synthesized using this method has a uniform morphology, small size (17 to 40) nm, high crystallinity, and high conductivity (9.42 s/cm).
Olmesartan medoxomil (OM) has low bioavailability and limited solubility. To enhance bioavailability, fast dissolving films (FDF) with mixed micelles of soluplus (SPL) and solutol HS15 (STL H15) were developed using solvent casting. The optimised formula, FM2, used polyvinyl alcohol (PVA) and showed high entrapment efficiency, rapid disintegration, and significant improvement in OM bioavailability compared to the market tablet (Olmetec®). FM2 also demonstrated stability and potential for enhanced drug delivery.
Aqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.
Biogenic gold nanoparticles (AuNPs) were synthesized using broccoli extract to assess their antioxidant activity, wound-healing potential, and selective anticancer effects. Green synthesis with broccoli offers an environmentally friendly way to produce stable and biocompatible nanomaterials. In this study, Brassica oleracea aqueous extract served as both the reducing and capping agent, producing AuNPs with a characteristic surface plasmon resonance peak at 560 nm and a well-defined cubic crystalline structure confirmed by XRD. TEM analysis showed uniformly dispersed, semi-spherical nanoparticles with an average size of 7.5 ± 3.6 nm. The biosynthesized AuNPs exhibited potent antioxidant activity, achieving 91.2 % DPPH scavenging at 100 µg/
... Show MoreThis work is aiming to study and compare the removal of lead (II) from simulated wastewater by activated carbon and bentonite as adsorbents with particle size of 0.32-0.5 mm. A mathematical model was applied to describe the mass transfer kinetic.
The batch experiments were carried out to determine the adsorption isotherm constants for each adsorbent, and five isotherm models were tested to choose the best fit model for the experimental data. The pore, surface diffusion coefficients and mass transfer coefficient were found by fitting the experimental data to a theoretical model. Partial differential equations were used to describe the adsorption in the bulk and solid phases. These equations were simplified and the
... Show MoreAbstract The present work aims to study the performance of reinforced compacted clay soil by sand columns stabilized with sodium silicate to obtain more solid columns than the surrounding soil. The experimental work was carried out by using a lab model to evaluate the performance of both the floating and end bearing sand columns. The results showed that the improvement ratio for the soil reinforced with sand columns stabilized with sodium silicate reached 390% for the type of floating columns and 438% for end bearing columns.
High performance liquid chromatography was applied for the separation and identification of four antharquinone derivatives, aloe emodin, emodin, chrysophanol and physcion. The separation was carried out using Eurospher 100, C18 column (4.6 mm i.d. x 250 mm, 5 µm) under the following conditions: acetonitile (solvent A) and water: acetic acid (99.9: 0.1 v/v, pH 3.5)( solvent B) as a mobile phase with isocratic elution with 30% solvent B at flow rate 0.8 ml/min. The detection wavelength was set at 254 nm. The four antharquinone derivatives were isolated from the Iraqi rhubarb, Rheum ribes root by preparative TLC, their structures were identified by 1H NMR and used as standards for HPLC analysis. The percentages of alo
... Show MoreElectro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show More