Let R be a commutative ring with non-zero identity element. For two fixed positive integers m and n. A right R-module M is called fully (m,n) -stable relative to ideal A of , if for each n-generated submodule of Mm and R-homomorphism . In this paper we give some characterization theorems and properties of fully (m,n) -stable modules relative to an ideal A of . which generalize the results of fully stable modules relative to an ideal A of R.
Homomorphic encryption became popular and powerful cryptographic primitive for various cloud computing applications. In the recent decades several developments has been made. Few schemes based on coding theory have been proposed but none of them support unlimited operations with security. We propose a modified Reed-Muller Code based symmetric key fully homomorphic encryption to improve its security by using message expansion technique. Message expansion with prepended random fixed length string provides one-to-many mapping between message and codeword, thus one-to many mapping between plaintext and ciphertext. The proposed scheme supports both (MOD 2) additive and multiplication operations unlimitedly. We make an effort to prove
... Show MoreLet R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.
This study deals with an important area in the field of linguistics, namely person deixis.
The study aims at: (1) Describing the notion of deixis, its importance, and its place in the field
of linguistics, (2) Presenting a detailed illustration of person deixis, and (3) Conducting an
analysis of person deixis in one of Synge‟s plays Riders to The Sea according to Levinson‟s
model. The most important aim of these three is the third one (the analysis). To achieve this
aim, the researcher depends on Levinson‟s (1983) descriptive approach. According to the
descriptive approach of deixis, the category of person deixis can be defined as the encoding of
the participant roles in the speech situation. This encoding is r
Let R be a commutative ring with unity 1 6= 0, and let M be a unitary left module over R. In this paper we introduce the notion of epiform∗ modules. Various properties of this class of modules are given and some relationships between these modules and other related modules are introduced.
In The Bluest Eye (1970) , Toni Morrison addresses a timeless problem of white racial dominance in the United States and points to the impact it has on the life of black females growing up in the 1930's. Morrison in this novel explores how Western standards of ideal beauty are created and propagated with and among the black community. The novel not only portrays the lives of those whose dark skinned and negroid features blight their lives; it also shows how the standards of white beauty are imposed on black youth to cause a damage of one's self-love and esteem which usually occurs when beauty goes unrecognized
In The Bluest Eye (1970), the American-African writer, Toni Morrison explores how
Western standards of ideal beauty are created and propagated with and among the black
community. The novel not only portrays the lives of those whose dark skinned and Negroid
features blight their lives; it also shows how the standard of white beauty, when imposed on
black youth, can drastically damage one’s self-love and esteem which usually occurs when
beauty goes unrecognized. Morrison in this novel focuses on the damage that the black
women characters suffer through the construction of femininity in a racialised society where
whiteness is used as a standard of beauty.
In this paper, we introduce and study a new concept (up to our knowledge) named CL-duo modules, which is bigger than that of duo modules, and smaller than weak duo module which is given by Ozcan and Harmanci. Several properties are investigated. Also we consider some characterizations of CL-duo modules. Moreover, many relationships are given for this class of modules with other related classes of modules such as weak duo modules, P-duo modules.
The main object of this paper is to study the representations of monomial groups and characters technique for representations of monomial groups. We refer to monomial groups by M-groups. Moreover we investigate the relation of monomial groups and solvable groups. Many applications have been given the symbol G e.g. group of order 297 is an M-group and solvable. For any group G, the factor group G/G? (G? is the derived subgroup of G) is an M-group in particular if G = Sn, SL(4,R).
In this paper we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of (denoted by ) Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.