Hollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fiber cross section. In this paper the fundamental physical mechanism has been discussed determining the dispersion properties of PCFs, and the dispersion in a gas filled hollow core photonic crystal fiber has been calculated. We calculate the dispersion of air filled hollow core photonic crystal fiber, also calculate the dispersion of N2 gas filled hollow core photonic crystal fiber and finally we calculate the dispersion of He gas filled hollow core photonic crystal fiber.
There are many animal models for polycystic ovary (PCO); using exogenous testosterone enanthate is one of the methods of induction of these models. However, induction of insulin resistance should also be studied in the modeling technics. Therefore, the present study aims to investigate the expression of insulin receptor substrate (Irs)-2 mRNA in the liver tissue of rat PCO model. Nineteen Wistar rats were divided into three groups; (1) PCO modeling group (N =7) received daily 1.0 mg/100g testosterone enanthate solved in olive oil along with free access dextrose water 5%, (2) vehicle group (N =6), which handled like the PCO group, but did not receive testosterone enanthate, (3) control group (N =6) with standard care. Al
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreSensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreAnalyze the relationship between genetic variations in the MTHFR gene at SNPs (rs1801131 and rs1801133) and the therapy outcomes for Iraqi patients with rheumatoid arthritis (RA). The study was conducted on a cohort of 95 RA Iraqi patients. Based on their treatment response, the cohort was divided into two groups: the responder (47 patients) and the nonresponder (48 patients), identified after at least three months of methotrexate (MTX) treatment. A polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP) technique was employed to analyze the MTHFR variations, specifically at rs1801133 and rs1801131. Overall, rs1801131 followed both codominant and dominate models, in which in
The increased applications of technology in the field of architecture, especially digital technology and aspects of automation, have made a major impact on various aspects of local architecture, especially the traditional ones. As these technologies have succeeded in integrating many technological applications in many traditional and heritage buildings and taking them to more complex uses. And included in it characteristics that were not contained, therefore the research problem was concentrated in the absence of a holistic view of the role of the aspects of automation as a technological and design effect and its mutual effects on traditional buildings (especially the traditional Bagh