Palm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main steps, at first data augmentation is done by making multiple copies of the input image then perform out-of-plane rotation on them around all the X,Y and Z axes. Then a new fast extract Region of Interest (ROI) algorithm is proposed for cropping palm region. Finally, features are extracted and classified by specific structure of Convolutional Neural Network (CNN). The system is tested on two public multispectral palm vein databases (PolyU and CASIA); furthermore, synthetic datasets are derived from these mentioned databases, to simulate the hand out-of-plane rotation in random angels within range from -20° to +20° degrees. To study several situations of pose invariant, twelve experiments are performed on all datasets, highest accuracy achieved is 99.73% ∓ 0.27 on PolyU datasets and 98 % ∓ 1 on CASIA datasets, with very fast identification process, about 0.01 second for identifying an individual, which proves system efficiency in contactless palm vein problems.
Asset management involves efficient planning of economic and technical performance characteristics of infrastructure systems. Managing a sewer network requires various types of activities so the network can be able to achieve a certain level of performance. During the lifetime of the network various components will start to deteriorate leading to bad performance and can damage the infrastructure. The main objective of this research is to develop deterioration models to provide an assessment tool for determining the serviceability of the sewer networks in Baghdad city the Zeppelin line was selected as a case study, as well as to give top management authorities the appropriate decision making. Different modeling techniques
... Show MoreBackground: Unlike normal EEG patterns, the epileptiform abnormal pattern is characterized by different mor phologies such as the high-frequency oscillations (HFOs) of ripples on spikes, spikes and waves, continuous and sporadic spikes, and ploy2 spikes. Several studies have reported that HFOs can be novel biomarkers in human epilepsy study. S) Method: To regenerate and investigate these patterns, we have proposed three large scale brain network models (BNM by linking the neural mass model (NMM) of Stefanescu-Jirsa 2D (S-J 2D) with our own structural con nectivity derived from the realistic biological data, so called, large-scale connectivity connectome. These models include multiple network connectivity of brain regions at different
... Show More<abstract><p>Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower iterative techniques. As a result, a novel
... Show MoreIn this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR) is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.
The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.
The results s
... Show MoreThe Braille Recognition System is the process of capturing a Braille document image and turning its content into its equivalent natural language characters. The Braille Recognition System's cell transcription and Braille cell recognition are the two basic phases that follow one another. The Braille Recognition System is a technique for locating and recognizing a Braille document stored as an image, such as a jpeg, jpg, tiff, or gif image, and converting the text into a machine-readable format, such as a text file. BCR translates an image's pixel representation into its character representation. As workers at visually impaired schools and institutes, we profit from Braille recognition in a variety of ways. The Braille Recognition S
... Show More