Palm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main steps, at first data augmentation is done by making multiple copies of the input image then perform out-of-plane rotation on them around all the X,Y and Z axes. Then a new fast extract Region of Interest (ROI) algorithm is proposed for cropping palm region. Finally, features are extracted and classified by specific structure of Convolutional Neural Network (CNN). The system is tested on two public multispectral palm vein databases (PolyU and CASIA); furthermore, synthetic datasets are derived from these mentioned databases, to simulate the hand out-of-plane rotation in random angels within range from -20° to +20° degrees. To study several situations of pose invariant, twelve experiments are performed on all datasets, highest accuracy achieved is 99.73% ∓ 0.27 on PolyU datasets and 98 % ∓ 1 on CASIA datasets, with very fast identification process, about 0.01 second for identifying an individual, which proves system efficiency in contactless palm vein problems.
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreThe study included the investigation of fungi which associated with heavy animal's leather (Cows and Buffalos) and light (Sheep’s and Goats )through different processing stages (raw hides ,dehairing ,pickling,chrome tanned and stainning or finished stages)there were 10 genera and 25 species in addition to sterile fungi associated with animal leathers which included Alternaria ,Aspergillus,Cladosporium,Fusarium, Mucor , Penicillium , Rhizopus , and Trichoderma .Aspergillus and Penicillium have observed in all leather samples and different processing stages, and that the first time isolate two genera Helminthosporium , Stemphylium form leather for staining stage.
Collapsible soil has a metastable structure that experiences a large reduction in volume or collapse when wetting. The characteristics of collapsible soil contribute to different problems for infrastructures constructed on its such as cracks and excessive settlement found in buildings, railways channels, bridges, and roads. This paper aims to provide an art review on collapse soil behavior all over the world, type of collapse soil, identification of collapse potential, and factors that affect collapsibility soil. As urban grow in several parts of the world, the collapsible soil will have more get to the water. As a result, there will be an increase in the number of wetting collapse problems, so it's very important to com
... Show MoreGram-positive enterococciare opportunistic and resistant to many antibiotics. This study aimed to investigate the presence of Enterococcus spp. in our community and whether these isolates are resistant to the macrolides class of antibiotics. Fifty isolates from 112 clinical samples were recognized as Enterococcus spp. and confirmed using Vitek-2 system. The current study found that 50/112 (44.6%) represented the total isolates, 38/50 (76%) of which were Enterococcus faecalis, while 12/50 (24%) were Enterococcus faecium, twenty (40%) isolates from root canals and 30 (60%) isolates from urine were isolated. The sensitivity of the enterococcal isolates to various macrolides (erythromycin, azithromycin and clarithromycin) antibiotics wa
... Show MoreThis study attempts to test the possibility of developing organizational performance in Zain Telecom by adapting the philosophy and concept of Organizational Identification and its dimensions, the most important of which are (Organizational Identification, organizational loyalty, organizational affiliation).To achieve the goal, the research relied on the questionnaire method, which is one of the methods of collecting information in field studies.
The research focuses on determination of best location of high elevated tank using the required head of pump as a measure for this purpose. Five types of network were used to find the effect of the variation in the discharge and the node elevation on the best location. The most weakness point was determined for each network. Preliminary tank locations were chosen for test along the primary pipe with same interval distance. For each location, the water elevation in tank and pump head was calculated at each hour depending on the pump head that required to achieve the minimum pressure at the most weakness point. Then, the sum of pump heads through the day was determined. The results proved that there is a most economical lo
... Show MoreIn this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show More