Palm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main steps, at first data augmentation is done by making multiple copies of the input image then perform out-of-plane rotation on them around all the X,Y and Z axes. Then a new fast extract Region of Interest (ROI) algorithm is proposed for cropping palm region. Finally, features are extracted and classified by specific structure of Convolutional Neural Network (CNN). The system is tested on two public multispectral palm vein databases (PolyU and CASIA); furthermore, synthetic datasets are derived from these mentioned databases, to simulate the hand out-of-plane rotation in random angels within range from -20° to +20° degrees. To study several situations of pose invariant, twelve experiments are performed on all datasets, highest accuracy achieved is 99.73% ∓ 0.27 on PolyU datasets and 98 % ∓ 1 on CASIA datasets, with very fast identification process, about 0.01 second for identifying an individual, which proves system efficiency in contactless palm vein problems.
Human interaction technology based on motion capture (MoCap) systems is a vital tool for human kinematics analysis, with applications in clinical settings, animations, and video games. We introduce a new method for analyzing and estimating dorsal spine movement using a MoCap system. The captured data by the MoCap system are processed and analyzed to estimate the motion kinematics of three primary regions; the shoulders, spine, and hips. This work contributes a non-invasive and anatomically guided framework that enables region-specific analysis of spinal motion which could be used as a clinical alternative to invasive measurement techniques. The hierarchy of our model consists of five main levels; motion capture system settings, marker data
... Show MoreFuture wireless communication systems must be able to accommodate a large number of users and simultaneously to provide the high data rates at the required quality of service. In this paper a method is proposed to perform the N-Discrete Hartley Transform (N-DHT) mapper, which are equivalent to 4-Quadrature Amplitude Modulation (QAM), 16-QAM, 64-QAM, 256-QAM, … etc. in spectral efficiency. The N-DHT mapper is chosen in the Multi Carrier Code Division Multiple Access (MC-CDMA) structure to serve as a data mapper instead of the conventional data mapping techniques like QPSK and QAM schemes. The proposed system is simulated using MATLAB and compared with conventional MC-CDMA for Additive White Gaussian Noise, flat, and multi-path selective fa
... Show More
XML is being incorporated into the foundation of E-business data applications. This paper addresses the problem of the freeform information that stored in any organization and how XML with using this new approach will make the operation of the search very efficient and time consuming. This paper introduces new solution and methodology that has been developed to capture and manage such unstructured freeform information (multi information) depending on the use of XML schema technologies, neural network idea and object oriented relational database, in order to provide a practical solution for efficiently management multi freeform information system.
Nowadays power systems are huge networks that consist of electrical energy sources, static and lumped load components, connected over long distances by A.C. transmission lines. Voltage improvement is an important aspect of the power system. If the issue is not dealt with properly, may lead to voltage collapse. In this paper, HVDC links/bipolar connections were inserted in a power system in order to improve the voltage profile. The load flow was simulated by Electrical Transient Analyzer Program (ETAP.16) program in which Newton- Raphson method is used. The load flow simulation studies show a significant enhancement of the power system performance after applying HVDC links on Kurdistan power systems. Th
... Show MoreEnhancement of the performance for hybrid solar air conditioning system was presented in this paper. The refrigerant temperature leaving the condenser was controlled using three-way valve, this valve was installed after the compressor to regulate refrigerant flow rate towards the solar system. A control system using data logger, sensors and computer was proposed to set the opening valve ratio. The function of control program using LabVIEW software is to obtain a minimum refrigerant temperature from the condenser outlet to enhance the overall COP of the unit by increasing the degree of subcooled refrigerant. A variable load electrical heater with coiled pipe was used instead of the solar collector and the storage tank to simulate the sola
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreChannel estimation (CE) is essential for wireless links but becomes progressively onerous as Fifth Generation (5G) Multi-Input Multi-Output (MIMO) systems and extensive fading expand the search space and increase latency. This study redefines CE support as the process of learning to deduce channel type and signal-tonoise ratio (SNR) directly from per-tone Orthogonal Frequency-Division Multiplexing (OFDM) observations,with blind channel state information (CSI). We trained a dual deep model that combined Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks (BRNNs). We used a lookup table (LUT) label for channel type (class indices instead of per-tap values) and ordinal supervision for SNR (0–20 dB,5-dB steps). T
... Show MoreFiber-to-the-Home (FTTH) has long been recognized as a technology that provides future proof bandwidth [1], but has generally been too expensive to implement on a wide scale. However, reductions in the cost of electro-optic components and improvements in the handling of fiber optics now make FTTH a cost effective solution in many situations. The transition to FTTH in the access network is also a benefit for both consumers and service providers because it opens up the near limitless capacity of the core long-haul network to the local user. In this paper individual passive optical components, transceivers, and fibers has been put together to form a complete FTTH network. Then the implementation of the under construction Baghdad/Al
... Show MoreDate palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today,
there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria
existing in marketed local milk is at highly risk on population health and may be life-threatening as most
biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming
bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial
isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm
(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis
In this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.