Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
We introduce some new generalizations of some definitions which are, supra closure converge to a point, supra closure directed toward a set, almost supra converges to a set, almost supra cluster point, a set supra H-closed relative, supra closure continuous functions, supra weakly continuous functions, supra compact functions, supra rigid a set, almost supra closed functions and supra perfect functions. And we state and prove several results concerning it
In this paper a theoretical attempt is made to determine whether changes in the aorta diameter at different location along the aorta can be detected by brachial artery measurement. The aorta is divided into six main parts, each part with 4 lumps of 0.018m length. It is assumed that a desired section of the aorta has a radius change of 100,200, 500%. The results show that there is a significant change for part 2 (lumps 5-8) from the other parts. This indicates that the nearest position to the artery gives the significant change in the artery wave pressure while other parts of the aorta have a small effect.
This work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
Photoplethysmography (PPG) is a non-invasive optical technique that employs variations in light absorption produced by alteration in the blood volume in capillaries at the skin during the cardiac cycle. This study aims to understand factors related to PPG morphology; a hand-elevation, the study has modified blood flow to and from the finger was conducted in the laboratory. It is widely established that the position of the limb relative to the heart has an effect on blood flow in arteries and venous. Peripheral digital pulse wave (DPW) signals were obtained from 15 healthy volunteer participants during hand-elevation, and hand-lowering techniques wherein the right hand was lifted and lowered relative to heart level, while the left h
... Show MoreAbstract
One of the major components in an automobile engine is the throttle valve part. It is used to keep up with emissions and fuel efficiency low. Design a control system to the throttle valve is newly common requirement trend in automotive technology. The non-smoothness nonlinearity in throttle valve model are due to the friction model and the nonlinear spring, the uncertainty in system parameters and non-satisfying the matching condition are the main obstacles when designing a throttle plate controller.
In this work, the theory of the Integral Sliding Mode Control (ISMC) is utilized to design a robust controller for the Electronic Throttle Valve (ETV) system. From the first in
... Show MoreThe investigation of determining solutions for the Diophantine equation over the Gaussian integer ring for the specific case of is discussed. The discussion includes various preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings show the existence of infinitely many solutions. Since the analytical method used here is based on simple algebraic properties, it can be easily generalized to study the behavior and the conditions for the existence of solutions to other Diophantine equations, allowing a deeper understanding, even when no general solution is known.
The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
We have studied new subclass B (A, B,γ) over multivalent functions. We have present some effects because of the category B (A, B,γ). We bear mentioned simple properties, convolution properties, incomplete sums, weighted mean, arithmetic mean, linear combination, inclusion rapport and neighborhood properties, software concerning fractional calculus then vile residences because of both the classes…