Overlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.
الانهار اصبحت مشبعة بثاني اوكسيد الكربون بشكل عالي وبذلك فهي تلعب دور مهم في كميات الكربون العالمية. لزيادة فهمنا حول مصادر الكربون المتوفرة في النظم البيئية النهرية، تم اجراء هذه الدراسة حول تأثير الكربون العضوي المذاب والحرارة (العوامل الرئيسية لتغير المناخ) كمحركات رئيسية لوفرة ثاني اوكسيد الكربون في الانهار. تم جمع العينات من خمسة واربعون موقع في ثلاثة اجزاء رئيسية لنهر دجلة داخل مدينة بغداد خلال فص
... Show MoreFour antimony compounds were used in this inves as additives to retard combustion of unsaturated polyester and epoxy resins, namely: 1. Tetraethyl ammonium tribromoethylantimonates (additive I). 2. Tetraethyl ammonium chlorodibromoethylantimonates (additive II). 3. Tetraethyl ammonium trichloroethylantimonates (additive III). 4. Tetraethyl ammonium bromodichloroethylantimonates (additive IV). The effects of these additives on flammability of unsaturated polyester and epoxy resins have been studied by using sheets of the resins with weight percentages of (0.5,1.0,1.5,2.0,2.5&3.0%) of the additives in dimensions of (150 X150X3)mm .Three standard test methods were used to measure the flame retardation which are: (ASTM:D -2863), (ASTM:D-635
... Show MoreObjective(s): The aim of this study is to compare the impact strength of a heat cured denture-base acrylic resin
reinforced with metal wire and glass fibers.
Methodology: Forty five specimens were prepared from pink heat cure acrylic resin. Specimens were grouped into;
group-I (control group) which consists of 15 specimens with no reinforcement, group-II which consists of 15 specimens
reinforced with metal wire, and group-III consists of 15 specimens reinforced with glass fibers. Specimens were tested
by using charpy impact machine.
Results: The result showed that there was a highly significant difference in impact strength value among the testing
groups at (P < 0.001).
Conclusion: The impact str
... Show MoreIn this work chemical vapor deposition method (CVD) for the production of carbon nanotubes (CNTs) have been improved by the addition of S. Steel mesh container (SSMC) inside which the catalyst (Fe/Al2O3) was placed. Scanning electron microscopy (SEM) investigation method used to study nanotubes produced, showed that high yield of two types of (CNTs) obtained, single wall carbon nanotube (SWCNTs) with diameter and length of less than 50nm and several micrometers respectively and nanocoil tubes with a diameter and length of less than 100nm and several micrometers respectively. The chemical analysis of (CNTs) reveals that the main component is carbon (94%) and a little amount of Al (0.32%), Fe (2.22%) the reminder is oxygen. It was also fou
... Show MoreSelf-repairing technology based on micro-capsules is an efficient solution for repairing cracked cementitious composites. Self-repairing based on microcapsules begins with the occurrence of cracks and develops by releasing self-repairing factors in the cracks located in concrete. Based on previous comprehensive studies, this paper provides an overview of various repairing factors and investigative methodologies. There has recently been a lack of consensus on the most efficient criteria for assessing self-repairing based on microcapsules and the smart solutions for improving capsule survival ratios during mixing. The most commonly utilized self-repairing efficiency assessment indicators are mechanical resistance and durab
... Show MoreIn this study, aluminum alloyAA6061-T6 was joined by a hot press process with three types of material; polyamide PA 6.6 (nylon), 1% carbon nanotube/PA6.6 and 30% carbon fiber/PA6.6 composites. Three parameters were considered in the hot pressing; temperature (180, 200 and 220°C), pressure (2, 3, 4, 5 and 6 bar) and time of pressing (1, 2, 3, 4 and 5 minutes for 200ºC, and 0.25, 0.5, 0.75, 1 and 1.25 minutes for220ºC). Applied pressure has great effect on shear strength of the joint, corresponding to bonding time and temperature. Maximum shear strength was 8.89MPa obtained for PA6.6 at bonding conditions of 4 bar, 220ºC and 0.75 minute. For 30% carbon fiber/PA6,6 shear recorded was
Polyacrylonitrile nanofiber (PANFS), a well-known polymers, has been extensively employed in the manufacturing of carbon nanofibers (CNFS), which have recently gained substantial attention due to their excellent features, such as spinnability, environmental friendliness, and commercial feasibility. Because of their high carbon yield and versatility in tailoring the final CNFS structure, In addition to the simple formation of ladder structures through nitrile polymerization to yield stable products, CNFS and PAN have been the focus of extensive research as potential production precursors. For instance, the development of biomedical and high-performance composites has now become achievable. PAN homopolymer or PAN-based precursor copolymer can
... Show MoreBackground: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness
... Show More