A sensitive and selective method have been developed for the determination of palladium (II)and platinum (II) . A new reagent and two complexes have been prepared in ethanolic solutions .The method is based on the chelation of metal ions with 4-(4?- pyrazolon azo) resorcinol (APAR) to form intense color soluble products, that are stable and have a maximum absorption at 595 nm and at 463 nm and ?max of 1.11×10 4 and.1.35 ×104 Lmole-1cm-1 for Pd(II) Pt(II) respectively. A linear correlation of (1.4 – 0.2) and (3.2 -0.4 ) ppm for pd(II) pt(II) respectively .The stability constants , relative errors , a relative standard deviations for Pd(II) and Pt(II) were 0.40×105 , 0.4×104 L mol-1 ,0.34 - 0.21% and 2.4 – 0.91% respectively. The conductivity measurements for complexes are consistent with those expected for an electrolyte. The proposed method was successfully applied to the analysis of dust and synthetic mixtures without any preliminary concentration or sparation.
Diazotization reaction between 1-(2,4,6-Trihydroxy-phenyl)-ethanone and diazonium salts was carried out resulting in ligand 4-(3-Acetyl-2,4,6-trihydroxy-phenylazo)-N-(5-methyl-isoxazol-3-yl)-benzenesulfonamide, this in turn reacted with the next metal ions (V4+ , Cr3+ , Mn2+ and Cu2+) forming stable complexes with unique geometries such as (Octahedral for both Cr3+ , Mn2+ and Cu2+ ,squar pyramidal for V4+). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and and the coordination with metal ion through it. Pyrolysis (TGA & DSC) studies proved the coordination of water residues with me
... Show MoreFour new copolymers were synthesized from reaction of bis acid monomer 3-((4-carboxyphenyl) diazenyl)-5-chloro-2-hydroxybenzoic acid with five diacidhydrazide in presence of poly phosphoric acid. The resulted monomers and copolymers have been characterized by FT-IR, 1H-NMR, 13C-NMR spectroscopy as well as EIMs technique. The number averages of molecular weights of the copolymers are between 4822 and 9144, and their polydispersity indexes are between 1.02 and 2.15. All the copolymers show good thermal stability with the temperatures higher than 305.86 C when losing 10% weight under nitrogen. The cyclic voltammetry (CV) measurement and the electrochemical band gaps (Eg) of these copolymers are found below 2.00 ev.
Newly acid hydrazide was synthesized from ethyl 2-(2,3-dimethoxyphenoxy) acetate (2), which is cyclized to the corresponding 4-amino-1,2,4-triazole (3). Five newly azo derivatives (4a-e) were synthesized from this 1,2,4-triazole by converting the amine group to diazonium salt then reacted with various substituent phenol,as well three newly imine derivatives (5a-c) were synthesized from reacting the amine group of compound (3) with three aryl aldehyde. The thermal electro conductivity of these compounds was tested at 30, 50, 75 and 100 áµ’C. compound 4a showed interesting electro conductivity at 75áµ’C as well 5a at 75áµ’C while 5b showed significant conductivity at 100 áµ’C
4-((2-hydroxy-3,5-dinitrophenyl)diazenyl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one was produced through the reaction of diazonium salt from 4-amino antipyrine with 2,4-dinitrophenol. This ligand is examined by (UV-Vis, FTIR,1H,13CNMR, and LC-Mass) spectral techniques and micro elemental analysis (C.H.N.O). Co(II), Ni(II), Cu(II), and Zn(II) complexes were also performed and depicted. Metal chelates were distinguished by utilizing flame atomic absorption, infrared analysis, and elemental, visible, as well as ultraviolet spectroscopy, in addition to conductivity and magnetic quantification. Methods of mole ratio and continuous contrast have been studied to determine the nature of the compounds. Beer's law was followed throughout a co
... Show MoreA new Azo‐Schiff base ligand L was prepared by reaction of m‐hydroxy benzoic acid with (Schiff base B) of 3‐[2‐(1H–indol‐3‐yl)‐ethylimino]‐1.5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylamine. This synthesized ligand was used for complexation with different metal ions like Ni(II), Co(II), Pd(II) and Pt(IV) by using a molar ratio of ligand: metal as 1:1. Resulted compounds were characterized by NMR (1H and 13C), UV–vis spectroscopy, TGA, FT‐IR, MS, elemental analysis, magnetic moment and molar conductivity studies. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and
... Show MoreThe objective of this study is to determine the concentration of copper and lead (mg/L) in drinking water by using absorption spectrophotometic and Atomic Absorption spectrophotometric method from different area in Baghdad and with different intervals , The results show that the concentration of copper and Lead ( mgL) in tap water which remains motionless in plumbing system for following periods one hours, 3 hours, 6 hours, 12 hours, 24 hours, 7 days and 14 days are (1 , 2.2 , 4 , 5.3 , 7.5 , 10 and 16 mgL copper ) & ( 0.3, 0.5 , 0.8 , 1 , 2.5 , 3 , 3.8 mg /L lead ) respectively .from these results its clear that high levels of copper & Lead occur if tap water comes in contact with copper - lead plumbing and copper lead -containing fix
... Show MoreAbstract :In this study, amygdaline in Iraqi plant seeds was extracted and isolated from their seeds matrix using reflux procedure and subsequently identified and determined by high performance liquid chromatography (HPLC) on reversed phase column of LC-18 (150mm x 4.6mm, 5?m )with actonitrile :water ( 50 : 50 ) as mobile phase at flow rate of ( 0.5 mL/min ) and detection at wavelength of 215 nm.The experimental results indicated that the linearity of calibration is in the range of 1.0-30.0 mg L-1amygdaline with the correlation coefficient of 0.9949. The limit of detection (LOD) and limit of quantitation (LOQ) for amygdaline were of 0.88 and 2.93 mg L-1 in standard pure sample. The mean recovery percent is 97.34±0.58 at 95% confidence inte
... Show MoreIn this paper we proposed the method of X-ray fluorescence (XRF) determination of some essential trace elements in medicinal herbs and vitamin-mineral complexes at the level of 100-101 mg/ml. To increase sensitivity and selectivity of the determination we simple and effective approach based on the extraction of metal ions from aqueous solutions with chemically modified polyurethane foam sorbents followed by direct XRF analysis. The conditions of sorption preconcentration of Co(II), Ni(II) and Zn(II) ions with modified sorbents were optimized. The proposed approach is used for the determination of trace elements in several kinds of medicinal herbs (coltsfoot leaves, nettle leaves and yarrow herb) and vitamin-mineral
... Show More