Preferred Language
Articles
/
bsj-1298
Approximate Solution of Delay Differential Equations Using the Collocation Method Based on Bernstien Polynomials???? ???????? ????????? ????????? ????????? ???????? ?????????? ???????? ??? ??????? ???? ?????????
...Show More Authors

In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
An Approximate solution for two points oundary value problem corresponding to some optimal control
...Show More Authors

this paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical

View Publication Preview PDF
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
The Modified Quadrature Method for solving Volterra Linear Integral Equations
...Show More Authors

In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.

View Publication Preview PDF
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Numerical Solution for Linear State Space Systems using Haar Wavelets Method
...Show More Authors

In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.

View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Int. J. Advance Soft Compu. Appl,
Arabic and English Texts Encryption Using Proposed Method Based on Coordinates System
...Show More Authors

Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
CONSTRUCTION DELAY ANALYSIS USING DAILY WINDOWS TECHNIQUE
...Show More Authors

Delays occur commonly in construction projects. Assessing the impact of delay is sometimes a contentious
issue. Several delay analysis methods are available but no one method can be universally used over another in
all situations. The selection of the proper analysis method depends upon a variety of factors including
information available, time of analysis, capabilities of the methodology, and time, funds and effort allocated to the analysis. This paper presents computerized schedule analysis programmed that use daily windows analysis method as it recognized one of the most credible methods, and it is one of the few techniques much more likely to be accepted by courts than any other method. A simple case study has been implement

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Cogent Engineering
On the computational aspects of Charlier polynomials
...Show More Authors

View Publication
Scopus (36)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
Efficient Iterative Method for Solving Korteweg-de Vries Equations
...Show More Authors

The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of 

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Mon Nov 14 2022
Journal Name
Physica Scripta
A wavelet-based collocation technique to find the discontinuous heat source in inverse heat conduction problems
...Show More Authors
Abstract<p>This paper is devoted to an inverse problem of determining discontinuous space-wise dependent heat source in a linear parabolic equation from the measurements at the final moment. In the existing literature, a considerably accurate solution to the inverse problems with an unknown space-wise dependent heat source is impossible without introducing any type of regularization method but here we have to determine the unknown discontinuous space-wise dependent heat source accurately using the Haar wavelet collocation method (HWCM) without applying the regularization technique. This HWCM is based on finite-difference and Haar wavelets approximation to the inverse problem. In contrast to othe</p> ... Show More
View Publication
Scopus (18)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of The Association Of Arab Universities For Basic And Applied Sciences
Semi-analytical method for solving Fokker-Planck’s equations
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
View Publication
Crossref (11)
Crossref