Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.
Objective(s): to assess the factors which are associated with the prolonged prehospital delay of patients with
acute myocardial infarction.
Methodology: A descriptive study was conducted at the Coronary Care unit (CCU) in Al-Yarmok Teaching
Hospital, Ibn AL-Nafis Hospital for Cardiovascular Diseases, AL-Kadumia Teaching Hospital, Baghdad Teaching
Hospital, and AL-Kindy Teaching Hospital during the period of the study from February 2
nd
, 2009 to October 30th
,
2009. A random sample of (160) paƟent who were admiƩed to the hospitals were selected one by one. A
questionnaire was constructed for the purpose of the study, which is comprised of four parts that include (1)
sociodemographic data; (2) prehospital d
In this work we reported the synchronization delay in
semiconductor laser (SL) networks. The unidirectional
configurations between successive oscillators and the correlation
between them are achieved. The coupling strength is a control
parameter so when we increase coupling strength the dynamic of the
system has been change. In addition the time required to synchronize
network components (delay of synchronization) has been studied as
well. The synchronization delay has been increased by mean of
increasing the number of oscillators. Finally, explanation of the time
required to synchronize oscillators in the network at different
coupling strengths.
This work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
The increasing availability of computing power in the past two decades has been use to develop new techniques for optimizing solution of estimation problem. Today's computational capacity and the widespread availability of computers have enabled development of new generation of intelligent computing techniques, such as our interest algorithm, this paper presents one of new class of stochastic search algorithm (known as Canonical Genetic' Algorithm ‘CGA’) for optimizing the maximum likelihood function strategy is composed of three main steps: recombination, mutation, and selection. The experimental design is based on simulating the CGA with different values of are compared with those of moment method. Based on MSE value obtained from bot
... Show MoreIn this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.
In this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
The main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isola
... Show MoreIt is recognized that organisms live and interact in groups, exposing them to various elements like disease, fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better understand these elements' impact on an eco-epidemi
... Show MoreThe purpose of this paper is to find the best multiplier approximation of unbounded functions in –space by using some discrete linear positive operators. Also we will estimate the degree of the best multiplier approximation in term of modulus of continuity and the averaged modulus.