In this research, the preparation of bidentate Schiff base was carried out via the condensation reaction of both the salicylaldehyde with 1-phenyl-2,3-dimethyl-4-amino-5-oxo-pyrazole to form the ligand (L). The mentioned ligand was used to prepare complexes with transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The resulting complexes were separated and characterized by FTIR and UV-Vis spectroscopic technique. Elemental analysis for Carbon, Hydrogen and Nitrogen elements, electronic spectra of the ligand and complexes were obtained, and the magnetic susceptibility tests were also achieved to measure the dipole moments. The molar conductivities were also measured and determination of chlorine content in the complexes and the metal ratio. The complexes have shown the octahydral shapes in the general formula [ML2Cl2], whereas M=Mn, Co, Ni, Cu and Zn, ligand which coordinated as bidentate behavior with nitrogen and oxygen as donor atoms.
1-[4-(4-Acetyl-2-hydroxy-phenylazo)-phenyl]-ethanone (L1) and 1-[3-Hydroxy-4(4-nitro-phenylazo)-phenyl]-ethanone (L2) were readied by combination the diazonium salts of amines with 3-hydroxyacetophenone. (C.H.N) analyses, infrared spectra, UV–vis electronic absorption spectra, 1H and 13CNMR spectral mechanisms are use to identified of the ligands. Complexes of Ni+2 and Cu+2 were performed as well depicted. The formation of complexes has been identified by using atomic absorption of flame, elemental analysis, infrared spectra and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied obeyed the mole ratio and continuous contrast methods, Beer's law followed during a concent
... Show More1-[4-(2-Hydroxy-4, 6-dimethyl-phenylazo)-phenol]-ethanone (HL1) and 2-(4-methoxy-phenylazo)-3, 5-dimethyl-phenol (HL2) were produced by combination the diazonium salts of amines with 3, 5-dimethylphenol. The geometry of azo compounds was resolved on the basis of (C.H.N) analyses, 1H and 13CNMR, FT-IR and UV-Vis spectroscopic mechanisms. Complexes of La (III) and Rh (III) have been performed and depicted. The formation of complexes has been identified by using elemental analysis, FT-IR and UV-Vis spectroscopic process as well, conductivity molar quantifications. Nature of complexes produced have been studied obeyed mole ratio and continuous alteration ways, Beer's law followed through a concentration scope (1×10-4 - 3×10-4 M). H
... Show MoreComplexes of Au (III), Pd (II), Pt (IV ) and Rh(III) with S–propynyle-2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro–elemental analysis (CHN).The probable structures of the new complexes have been suggested.
2- amino -5- thiol-1,3,4- thiadiazole (S1) was prepared by cyclic locking of thiosemicarbazide in the presence of anhydrous sodium carbonate and CS2. diazotization of (S1) compound gave diazonium salt (S2) that reacts with different activated aromatic compounds to get the following azo compounds ,2 [(4- aminophenyl) diazenyl ] 1,3,4- thiazdiazole-5- thiol (S3) ,2-[4-amino- 1-naphthyl diazenyl] -1,3,4 – thiazdiazole-5-thiol (S4) , 3-amino-4-[(5- mercapto -1,3,4- thiadiazole -2-yl) diazenyl ] phenol(S5) ,1-[(5-mercapto-1,3,4-thiadiazole-2-yl) diazenyl] -2-naphthol (S6) , 5-{[4-(dimethylamino) phenyl] diazenyl}-1,3,4-thiadiazole-2- thiol(S7) ,5-{[4-(diethylamino) phenyl] diazenyl}-1,3,4- thiadiazole-2- thiol(S8) ,2- amino-5-[(5-mercapto-1,3
... Show MoreTheligand4-[5-(2-hydoxy-phenyl)- [1,3,4- thiadiazole-2- ylimino methyl]-1,5-dimethyl -2-phenyl-1,2-dihydro-pyrazol-3-one [HL1] is prepared and characterized. It is reacted with poly(vinyl chloride) (PVC) in THF to form the PVC-L compounds ,PVC-L interacted with ions of transition metals to form PVC-L-MII complexes .All prepared compounds are characterized by FTIR spectroscopy, u.v-visible spectroscopy, C.H.N.S. analysis and some of them by 1HNMR
New (pentulose-?-lactone-2,3-enedibenzoate barbituric acid) (L) have been synthesized by reaction of (5-C-dimethyl malonyl-pentulose-?-lactone-2,3-enedibenzoate) with urea in alkaline media (sodium methoxide). (Ca+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of (pentulose-?-lactone-2,3-enedibenzoate barbituric acid) (L) have been prepared and characterized by (1H and 13CNMR), FTIR, (U.V-Vis) spectroscopy, Atomic absorption spectrophotometer (A.A.S), Molar conductivity measurements and Magnetic moment measurements, and the following general formula has been given for the prepared complexes [MLCl2(H2O)].XH2O, where M = (Ca+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2, Hg+2), X = five molecules with (Cd+2) complex, L = (pentulose-?-lactone-2,3
... Show MoreIn this publication, several six coordinate Co(III)-complexes are reported. The reaction of 2,3-butanedione monoxime with ethylenediamine or o-phenylenediamine in mole ratios of 2:1 gave the tetradentate imine-oxime ligands diaminoethane-N,N`-bis(2-butylidine-3-onedioxime) H2L1 and o-phenylenediamine-N,N`-bis(2-butylidine-3-onedioxime), respectively. The reaction of H2L1 and H2L2 with Co(NO3)2, and the amino acid co-ligands (glycine or serine) resulted in the formation of the required complexes. Upon complex formation, the ligands behave as a neutral tetradantate species, while the amino acid co-ligand acts as a monobasic species. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectro
... Show MoreCoupling reaction of 4-amino antipyrene with 2,6-dimethyl phenol gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII, ZnII, CdII, and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2Cl2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UVVis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied followin
... Show More