Laser beam has been widely used to improve the mechanical properties of the metals. It used for cutting, drilling, hardening, welding……etc. The use of Laser beam has many features in accuracy and speeding in work, also in the treatment of metals locally, and in the places that is hard to reach by traditional ways. In this research a surface treatment was done to medium carbon steel (0.4%C) which is common kind of steel that is used in industry. Pulsing Neodymium -YAG Laser has been used and 1.06 micrometer wave length and 5 msec and the distance is about 30 centimeter between the exit area of the Laser beam from the system and the piece that treated . We are going to check the fatigue resistance for samples that is treated by Laser beam and Scanning Electron Microscope (SEM) and also we made check for the microstructure by using the light microscope and the SEM for the breaking samples. The results of checking showed that there is an improvement in the fatigue resistance after the treatment by the Laser beam. The results of microscope checking showed that the beginning of the failure is from the surface area and there is more than one level of the break.
Antibacterial activity of CNSs against Staphylococcus aureus and Escherichia coli was estimated. Higher inhibition zone of 18 mm and 20 mm were observed against S. aureus and E.coli, respectively, at a concentration of 2 mg/ml of carbon nanosphere after 24 hrs of incubation at 37 ºC. In vitro cytotoxicity experiment was performed on two parasite strains of Leishmania donovani and Leishmania tropica by using MTT assay. L. donovani revealed more sensitiv to the CNSs than L. tropica. An intermediate level of cytotoxicity of 51.31 % was observed when 2.4 mg/ml of CNSs was incubated with L. donovani, while weak cytotoxicity of 37.20 % was shown when the
... Show MoreAbstract
Black paint laser peening (bPLP) technique is currently applied for many engineering materials , especially for aluminum alloys due to high improvement in fatigue life and strength . Constant and variable bending fatigue tests have been performed at RT and stress ratio R= -1 . The results of the present work observed that the significance of the surface work hardening which generated high negative residual stresses in bPLP specimens .The fatigue life improvement factor (FLIF) for bPLP constant fatigue behavior was from 2.543 to 3.3 compared to untreated fatigue and the increase in fatigue strength at 107 cycle was 21% . The bPLP cumulative fatigue life behav
... Show More
Burnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue
... Show MoreComposite steel-concrete sections have a broad benefit through increasing structural strength as well as minimizing the self-loads. All past researches were concerned with pre-installed shear connectors (PRSC) in the manufacturing of composite sections. A new fabrication technique for steel-concrete-steel composite sections were presented in the current study by the post-installation shear connectors (POSC) passed-through an embedded polymerizing vinyl chloride (PVC) pipes. The performance of normal strength concrete prisms with a specified strength of 32 MPa connected to square steel tubes (SST) was investigated. Six specimens were fabricated in both methodologies, PRSC and POSC were experimentally tested by Push-out test. The spac
... Show MoreMechanical and thermal properties of composites, consisted of unsaturated polyester resin, reinforced by different kinds of natural materials (Orange peels and Date seeds) and industrial materials (carbon and silica) with particle size 98 µm were studied. Various weight ratios, 5, 10, and 15 wt. % of natural and industrial materials have been infused into polyester. Tensile, three-point bending and thermal conductivity tests were conducted for the unfilled polyester, natural and industrial composite to identify the weight ratio effect on the properties of materials. The results indicated that when the weight ratio for polyester with date seeds increased from 10% to 15%, the maximum Young’s modulus decreased by 54%. When the weight rat
... Show MoreRadial density distribution function of one particle D(r1) was calculated for main orbital of carbon atom and carbon like ions (N+ and B- ) by using the Partitioning technique .The results presented for K and L shells for the Carbon atom and negative ion of Boron and positive ion for nitrogen ion . We observed that as atomic number increases the probability of existence of electrons near the nucleus increases and the maximum of the location r1 decreases. In this research the Hartree-fock wavefunctions have been computed using Mathcad computer software .
This work describes an experimental setup to evaluate the photodynamictoxicity of 650 nm diode laser and 532 nm Frequency-doubled Q-Switched Nd:YAG laser on the growth of Candida albicans as well as the potential fungicidal effect when combining the laser irradiation with specific photosensitizers namely methylene blue, toluidine blue, acridine orange and safranin O. In this study the findings showed that the number of colony-forming units per millilitre (CFU/ml) of C. albicans decreased with increasing exposure time. In particular in the case of the frequency doubled Nd:YAG laser combined with safranin O, the best lethal effect occurred at 11 minutes exposure time with 2.26 J/cm² energy density (89.18% reduction) in comparison with the
... Show MoreThe aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show More