In this research, optical communication coding systems are designed and constructed by utilizing Frequency Shift Code (FSC) technique. Calculations of the system quality represented by signal to noise ratio (S/N), Bit Error Rate (BER),and Power budget are done. In FSC system, the data of Nonreturn- to–zero (NRZ ) with bit rate at 190 kb/s was entered into FSC encoder circuit in transmitter unit. This data modulates the laser source HFCT-5205 with wavelength at 1310 nm by Intensity Modulation (IM) method, then this data is transferred through Single Mode (SM) optical fiber. The recovery of the NRZ is achieved using decoder circuit in receiver unit. The calculations of BER and S/N for FSC system at maximum fiber length at 61.2 km equal to 2.30551×10-12, 47.88526 dB respectively. The power budget for FSC system was calculated to be 29 dB. Results show that the BER increases when the received optical power decreases the due to increase of the optical fiber length61.2 km. while S/N decreases. The optical power budget increases as the transmitted optical power increases.
In this paper the experimentally obtained conditions for the fusion splicing with photonic crystal fibers (PCF) having large mode areas were reported. The physical mechanism of the splice loss and the microhole collapse property of photonic crystal fiber (PCF) were studied. By controlling the arc-power and the arc-time of a conventional electric arc fusion splicer (FSM-60S), the minimum loss of splicing for fusion two conventional single mode fibers (SMF-28) was (0.00dB), which has similar mode field diameter. For splicing PCF (LMA-10) with a conventional single mode fiber (SMF-28), the loss was increased due to the mode field mismatch.
The change in project cost, or cost growth, occurs from many factors, some of which are related to soil problem conditions that may occurs during construction and/or during site investigation period. This paper described a new soil improvement method with a minimum cost solution by using polymer fiber materials having a length of (3 cm) in both directions and (2.5 mm) in thickness, distributed in uniform medium dense .
sandy soil at different depths (B, 1.5B and 2B) below the footings. Three square footings has been used (5,7.5 and 10 cm) to carry the above investigation by using lever arm loading system design for such purposes.
These fibers were distributed from depth of (0.1B) below the footing base down to the investigated dep
Iraq suffers from serious pollution with harmful particles that have important direct and indirect effects on human activities and human health. In this research, a system for detecting pollutants in the air was designed and manufactured using infrared laser technology. This system was used to detect the presence of pollutants in the dust storms that swept the city of Baghdad which could have a negative impact on human health and living organisms.
The designed detection system based on the use of infrared laser (IR) with a wavelength of 1064 nm was used for the purposes of detecting pollutants based on the scattering of the laser beam from these pollutants. The system was aligned to obtain the best signal for the scattered rays, w
... Show MoreLiquefied petroleum gases (LPG) consist of hydrocarbons obtained by refining crude oil, either from propane or butane or a mixture of the two. There are often other components such as propylene, butylene or other hydrocarbons, but they are not the main component. The study aims to review previous studies dealing with designing an LPG system to deliver gas to residential campuses and buildings. LPG is extracted from natural gas NG by several processes, passing through fractionation towers and then pressuring into CNG storage tanks. Gas contains several problems, including gas leakage through the pipes and leads to fires or explosions in LPG storage and distribution tanks, so safety conditions were taken in the design and implementation. T
... Show MoreTitanium dioxide (TiO2) thin films were prepared under different pressures with values (15, 30, 60 and 120) Pa using the DC reactive magnetron homemade system with mixed gases of argon and oxygen in ratio (50:50). The result of X-ray diffraction patterns discovered that the structure of the deposited films was polycrystalline, including the phase of anatase. All the appeared peaks were matched to the planes (101), (004), (105), and (211) of diffracted states. Both the intensities and the number of the appeared peaks are declined according to the increased pressure, and the plane of (101) is be considered the preferential grown plane, it is taking a maximum texture factor. Both the lattice constant and the atomic inter-planer spacing take th
... Show MoreAlloys of GaxSb1-x system with different Ga concentration (x=0.4, 0.5, 0.6) have been prepared in evacuated quartz tubes. The structure of the alloys were examined by X-ray diffraction analysis (XRD) and found to be polycrystalline of zincblend structure with strong crystalline orientation (220). Thin films of GaxSb1-x system of about 1.0 μm thickness have been deposited by flash evaporation method on glass substrate at 473K substrate temperature (Ts) and under pressure 10-6 mbar. This study concentrated on the effect of Ga concentration (x) on some physical properties of GaxSb1-x thin films such as structural and optical properties. The structure of prepared films for various values of x was polycrystalline. The X-ray diffraction analy
... Show MoreClassical cryptography systems exhibit major vulnerabilities because of the rapid development of quan tum computing algorithms and devices. These vulnerabilities were mitigated utilizing quantum key distribution (QKD), which is based on a quantum no-cloning algorithm that assures the safe generation and transmission of the encryption keys. A quantum computing platform, named Qiskit, was utilized by many recent researchers to analyze the security of several QKD protocols, such as BB84 and B92. In this paper, we demonstrate the simulation and implementation of a modified multistage QKD protocol by Qiskit. The simulation and implementation studies were based on the “local_qasm” simulator and the “FakeVigo” backend, respectively. T
... Show MoreWith the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil’s mutual displacement and coupling coef
... Show MoreNowadays, the robotic arm is fast becoming the most popular robotic form used in the industry among others. Therefore, the issues regarding remote monitoring and controlling system are very important, which measures different environmental parameters at a distance away from the room and sets various condition for a desired environment through a wireless communication system operated from a central room. Thus, it is crucial to create a programming system which can control the movement of each part of the industrial robot in order to ensure it functions properly. EDARM ED-7100 is one of the simplest models of the robotic arm, which has a manual controller to control the movement of the robotic arm. In order to improve this control s
... Show More