In this work, we are obviously interested in a general solution for the calculation of the image of a single bar in partially coherent illumination. The solution is based on the theory of Hopkins for the formation of images in optical instruments in which it was shown that for all practical cases, the illumination of the object may be considered as due to a self – luminous source placed at the exit pupil of the condenser , and the diffraction integral describing the intensity distribution in the image of a single bar – as an object with half – width (U0 = 8 ) and circular aperture geometry is viewed , which by suitable choice of the coherence parameters (S=0.25,1.0.4.0) can be fitted to the observed distribution in various types of microscope , the aberration were restricted to defocusing and coma upto third – order , the method of integration was Gauss quadrature: The necessary set of integration depends , of course , on the amount of present aberrations and had to be chosen (20) points of Gauss which decrease the computation time to few seconds: The aberration free systems corresponding to the paraxial receiving plane (W20= 0.0) is especially interesting as it predicts diffraction pattern shape. The influence of defocusing is very pronounced and relatively distorts the object , the influence of the off – axis aberration (third – order coma ), in which it was shown that for the high peaks in the images are most noticeable in the region of almost perfect coherence (S=0.25). As (S) is increased from (0.25) to (1.0) there is a pronounced redistribution of intensity, with peaks moving from one side of the image to the other. Calculations were also performed for systems having spherical aberration, but the results are qualitatively similar to an aberration – free defocused system and are omitted, so we will not present any numerical results. A computer program was written in FORTRAN 77 which solved the modified intensity distribution of Hopkins for(U´) dimensionless distance. The advantage of that additional work on this class of problems to investigate the development of more efficient numerical methods, also the reduction in computation time to few seconds for data runs for individual curves of intensity.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
The aim of this paper is to introduces and study the concept of CSO-compact space via the notation of simply-open sets as well as to investigate their relationship to some well known classes of topological spaces and give some of his properties.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes
In this paper, the concept of semi-?-open set will be used to define a new kind of strongly connectedness on a topological subspace namely "semi-?-connectedness". Moreover, we prove that semi-?-connectedness property is a topological property and give an example to show that semi-?-connectedness property is not a hereditary property. Also, we prove thate semi-?-irresolute image of a semi-?-connected space is a semi-?-connected space.
The purpose of this paper is to give some results theorems , propositions and corollaries concerning new algebraic systems flower , garden and farm with accustomed algebraic systems groupoid , group and ring.
Background: Inflammation of the brain parenchyma brought on by a virus is known as viral encephalitis. It coexists frequently with viral meningitis and is the most prevalent kind of encephalitis. Objectives: To throw light on viral encephalitis, its types, epidemiology, symptoms and complications. Results: Although it can affect people of all ages, viral infections are the most prevalent cause of viral encephalitis, which is typically seen in young children and old people. Arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumoviruses, and coronaviruses are just a few of the viruses that have been known to cause encephalitis. Conclusion: As new viruses emerge, diagnostic techniques advan
... Show More